
International Journal of Engineering Research and Modern Education (IJERME) 

ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume I, Issue I, 2016 

167 
 

DETECTING ALL ACCEPTING CYCLES 
 M. Sureshkumar* & D. Vinotha** 

* M.Tech Scholar, Department of Computer Science and Engineering, 
PRIST University, Thanjavur, Tamilnadu 

** Assistant Professor, Department of Computer Science and 
Engineering, PRIST University, Thanjavur, Tamilnadu 

Abstract: 
Software testing is a defect preventive activity that presents many information 

navigation challenges for code description process. Brief description and short 
implementation of source code to generate code automatically emerging technology 
summarization for the code developers. Current packaging techniques to summarize key 
terms (lexical process) of those statements and information that process including concept 
first and then code. The proposed solution is to check the function process to identify the 
initialization, input and output process. In a recent paper, a method was proposed to 
accelerate the majority Linear Temporal Logic (LTL) of difference set low density parity 
check in programming logic. As computer system dependability has become increasingly 
important, there has been a significant amount of research in checking the programming 
methodology. The method detects whether a code has logical test case generations in the 
first iterations of majority Linear Temporal Logic (LTL). The propose method, I/O efficient 
approach for detecting errors is called Detecting All Accepting Cycles using State-of- the-
Art algorithm. In this project, we generate a programming code that has predict an 
output. The proposed State-art algorithm is used to predict the logical error in the I/O 
accepting programming languages.  
Index Terms: Linear Temporal Logic (LTL), State-of-the-Art Algorithm & Detecting All 
Accepting Cycles   
1. Introduction: 

The commonly used automata-based approach to LTL model checking reduces 
the problem of model checking to the problem of accepting cycle detection 
summarization. Many more-or-less successful reduction techniques have been 
introduced to fight the problem and to move the frontier of still tractable systems 
further. Nevertheless, for real-life industrial systems the reduction techniques are not 
efficient enough to make the verification tractable. A possible solution is to increase the 
computational resources available to the verification process. The two major 
approaches applied to increase the computational memory devices (disks).Regarding 
external memory devices, the main limiting factor of the approach is the amount of I/O 
operations an algorithm has to perform to complete its task. This is because the access 
to information stored on the external device is in order of magnitude slower than the 
access to information stored in the main memory. Thus, it became common to measure 
the efficiency of an I/O algorithm in the number of I/O operations such as random 
accesses, scans, and sorts. Thus, an algorithm working with implicit definition may save 
up to random access operations, which may have significant impact on the performance 
of the algorithm in practice .Nevertheless, the suggested reduction transforms the graph 
so that the size of the graph after the transformation is asymptotically quadratic with 
respect to the original size. As the I/O approach is meant to be applied first of all to 
large scale graphs, the quadratic increase in the size of the graph is significant and 
according to our experience often results in unsuccessful termination of the algorithm 
due to the lack of space. This is especially the case, if the model is valid and the graph 
has to be traversed completely to prove the absence of an accepting cycle. The approach 



International Journal of Engineering Research and Modern Education (IJERME) 

ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume I, Issue I, 2016 

168 
 

is thus mainly useful for finding counterexamples in the case the standard verification 
tools fail to do so due to the lack of memory. The completeness of LTL model checking 
is, however, very important. A typical scenario is that if the system is invalid and the 
counterexample found, the system is corrected and the property verified again. In the 
end, the graph must be traversed completely anyway. 

 
Figure 1: System Architecture 

2. Detecting Accepting Cycles: 
The long- term goal is to have the automated selection process choose the same 

keywords based on check sum eye-tracking algorithm that an algorithm process 
provides a summary of the code. The automated summarization could then be dedicated 
to the summary building phase based on the initialization and declaration. The propose 
method, An I/O efficient approach for spotting the test case generation using state-of-
the-art algorithm. State-of-the-art algorithms to predict fault-detection significantly 
and reduces memory access time. The detection task is to retrieve code and variables 
that summarizes the lexical detection such as variable detection, index terms that are 
matched with the novel summarizes. The state-of-the-art error detector module has 
been designed in a way that is independent of the code size. Very less expensive 
compare to existing method. It has essential contributions to the good performance of 
our approach. Error detection in application is measured accurately. 
3. Detecting Cycle Process Flow:  
3.1. User Registration and Login: 

In this module the client providing information for login, such as the user name 
and password is to register to detecting of all accepting cycles. Before the registration 
ensure whether providing user information which are similarity among the required 
details.  The authorized user can login into the system and the unauthorized user cannot 
enter into the system. If the new user want to login means Compulsory registered. In the 
schedule process of information stored during registration is responsible for customers 
as per the service level agreements. 

 



International Journal of Engineering Research and Modern Education (IJERME) 

ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume I, Issue I, 2016 

169 
 

3.2 Program Parser: 
Parsing or syntactic analysis is the process of natural language or in computer 

languages, conforming to the rules. For compiled languages syntax errors occur strictly 
at compile-time. A program will not compile until all syntax errors are corrected. For 
interpreted languages, however, not all syntax errors can be reliably detected until run-
time, and it is not necessarily simple to differentiate a syntax error from a semantic 
error. In this module the source program is given as an input for find the logical error of 
the program. 

 
3.3 Function Finder in a Program: 

Program submitted to a compiler often have errors of various kinds. So, good 
compiler should be able to detect as many errors as possible in various ways and also 
recover from them (i.e.) even in the presence of errors, the compiler should scan the 
program and try to compile all of it. However, no compiler can do true correction. 
Because, compiler won’t know the intent of the programmer due to errors. Completely 
accurate error correction can be done only by the programmer. Simply the logical 
function has to store in the database. Based on the database and errors the program has 
compiled in the run time. 

 
3.4 Test Case Generation Using State Art of Algorithm: 
When the scanner or parser finds an error and cannot proceed, the compiler must 
modify the input. Function finder has to find the logical function of the program. So that 
the correct portions of the program can be pieced together and successfully processed 
in the syntax analysis phase. The problem overlapped by State-of-the-art algorithm. 
This technique does the job of error recovery not only from the compiler point of view 
but also from the programmers point based on the function finder. It generates code to 
be executed, which eases the programmer. Therefore, there should be a considerable 
forethought from the ultimate solution for the all accepting cycles 



International Journal of Engineering Research and Modern Education (IJERME) 

ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume I, Issue I, 2016 

170 
 

 
4. A State of the Art Algorithm: 

This steady state algorithm works as follows. Its parameters are the population size

, the number  of steady state individuals, the ratio  of the Gaussian mutation 
operator, and its mutation probability . 

1. Set the time (i.e., the generation number) . 

2. Initialize the population  using random numbers. 

3. Evaluate  using the given objective function . 
4. While the population has not converged and the maximum number of 

generations has not been reached, do 
1. Increase time, . 

2. Construct the new generation  from the old one : 

1. Construct  individuals using point in the middle 
crossover, where individuals are chosen using a linearly scaled 
roulette wheel. 

2. Mutate the population using the Gaussian mutation operator (cf. 

Section and the given  ratio using the mutation probability . 

3. The new population  consists of the best  individuals 

from  and the  individuals just constructed. 

3. Evaluate  in parallel. Remember the best individual ever found. 
4. Repeat. 

5. Finally return the best individual. 

Typical values for the parameters of the algorithm are , , , 
and . 

The most notable difference to the classic algorithm is the use of a linearly scaled 
roulette wheel for selecting promising individuals. This ensures a consistent selection 
process during the whole optimization. In the selection process the right amount of 
support of individuals of high fitness, i.e., individuals likely to solve the given 
optimization problem, must be found. If their probability of proliferation is too close to 
the probability of individuals of low fitness, the population converges slowly or not at 
all. If the difference is too big, premature convergence to a local extreme is likely. The 
linearly scaled roulette wheel selection provides a good compromise. 
5. Discussion and Future Work: 

In the paper, the interesting problem for future research. The application of the 
proposed technique to memories that use scrubbing is also an interesting topic and was 
in fact the original motivation that led to new technique scheme to find the runtime 



International Journal of Engineering Research and Modern Education (IJERME) 

ISSN (Online): 2455 - 4200 

(www.rdmodernresearch.com) Volume I, Issue I, 2016 

171 
 

errors and checking Software Requirement Specification (SRS). 
6. Concluding Remarks: 

Developers spend much of their time reading and browsing source code, raising 
new opportunities for summarization methods. Indeed, modern code editors provide 
code folding, which allows one to selectively hide blocks of code. On the other hand, the 
state-of-the-art function error detector module has been designed in a way that is 
independent of the code. The extension of this proof to the case of four errors would 
confirm the validity of the state-of-the-art approach for a more general case, something 
that has only been done through simulation. 
7. Acknowledgements: 
Part of this paper has regarded in [1]. This new version contains giant revision with 
new algorithm designs, detecting runtime errors and checking the Software 
Requirement Specification (SRS). 
8. References: 

1. M. Vardi and P. Wolper, “An automata-theoretic approach to automatic program 
verification,” in Proc. Symp. Logic Comput. Sci., pp. 332–344, 1986. 

2. J. Barnat, L. Brim, and P. Simecek, “I/O efficient accepting cycle detection,” in 
Proc. Int. Conf. Comput. Aided Verification, pp. 281–293, 2007. 

3. L. Brim, I. Cerna, P. Moravec, and J. Simsa, “Accepting predecessors are better 
than back edges in distributed LTL modelchecking,” in Proc. Conf. Formal 
Methods in Comput.-Aided Des., pp. 352–366,2004. 

4. S. Edelkamp, P. Sanders, and P. Simecek, “Semi-external LTL model checking,” in 
Proc. Int. Conf. Comput. Aided Verification, pp. 530–542, 2008. 

5. J. Barnat, L. Brim, P. Simecek, and M. Weber, “Revisiting resistance speeds up 
I/O-efficient LTL model checking,” in Proc. 14th Int. Conf. Tools Algorithms. 
Construction Anal. Syst., pp. 48–62, 2008. 

6. S. Edelkamp and S. Jabbar, “Large-scale directed model checking LTL,” in Proc. 
13th Int. Conf. Model Checking Softw., pp. 1–18, 2006.  

7. U. Stern and D. Dill, “Using magnetic disk instead of main memory in the Mur’ 
verifier,” in Proc. Int. Conf. Comput. Aided Verification, pp. 172–183, 1992. 

8. R. Korf, “Best-first frontier search with delayed duplicate detection,” in Proc. 
19th Nat. Conf. Artif. Intell., pp. 650–657,2004. 

9. R. Korf and P. Schultze, “Large-scale parallel breadth-first search,” in Proc. 20th 
Nat. Conf. Artif. Intell.,  pp. 1380–1385,2005. 

10. K. Mehlhorn and U. Meyer, “External-memory breadth-first search with sublinear 
I/O,” in Proc. 10th Annu. Eur. Symp. Algorithms, pp. 723–735, 2002. 

11. J. Barnat, L. Brim, and J. Chaloupka, “Parallel breadth-first search LTL model-
checking,” in Proc. Conf. Autom. Softw. Eng., pp. 106–115, 2003. 

12. R. Korf, “Linear-time disk-based implicit graph search,” J. ACM, vol. 55, no. 6, pp. 
1–40, 2008. 

13. S. Leue and M. T. Befrouei, “Counterexample explanation by anomaly detection,” 
in Proc. 19th Int. Conf. Model Checking Softw., pp. 24–42, 2012. 


