International Journal of Engineering Research and Modern Education (IJERME)
ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume I, Issue I, 2016

DETECTING ALL ACCEPTING CYCLES
M. Sureshkumar* & D. Vinotha**
Moder tsearch * M.Tech Scholar, Department of Computer Science and Engineering,
< OERWe > Y PRIST University, Thanjavur, Tamilnadu _
Assistant Professor, Department of Computer Science and
Engineering, PRIST University, Thanjavur, Tamilnadu

Abstract:

Software testing is a defect preventive activity that presents many information
navigation challenges for code description process. Brief description and short
implementation of source code to generate code automatically emerging technology
summarization for the code developers. Current packaging techniques to summarize key
terms (lexical process) of those statements and information that process including concept
first and then code. The proposed solution is to check the function process to identify the
initialization, input and output process. In a recent paper, a method was proposed to
accelerate the majority Linear Temporal Logic (LTL) of difference set low density parity
check in programming logic. As computer system dependability has become increasingly
important, there has been a significant amount of research in checking the programming
methodology. The method detects whether a code has logical test case generations in the
first iterations of majority Linear Temporal Logic (LTL). The propose method, 1/0 efficient
approach for detecting errors is called Detecting All Accepting Cycles using State-of- the-
Art algorithm. In this project, we generate a programming code that has predict an
output. The proposed State-art algorithm is used to predict the logical error in the 1/0
accepting programming languages.

Index Terms: Linear Temporal Logic (LTL), State-of-the-Art Algorithm & Detecting All
Accepting Cycles
1. Introduction:

The commonly used automata-based approach to LTL model checking reduces
the problem of model checking to the problem of accepting cycle detection
summarization. Many more-or-less successful reduction techniques have been
introduced to fight the problem and to move the frontier of still tractable systems
further. Nevertheless, for real-life industrial systems the reduction techniques are not
efficient enough to make the verification tractable. A possible solution is to increase the
computational resources available to the verification process. The two major
approaches applied to increase the computational memory devices (disks).Regarding
external memory devices, the main limiting factor of the approach is the amount of 1/0
operations an algorithm has to perform to complete its task. This is because the access
to information stored on the external device is in order of magnitude slower than the
access to information stored in the main memory. Thus, it became common to measure
the efficiency of an [/0 algorithm in the number of /O operations such as random
accesses, scans, and sorts. Thus, an algorithm working with implicit definition may save
up to random access operations, which may have significant impact on the performance
of the algorithm in practice .Nevertheless, the suggested reduction transforms the graph
so that the size of the graph after the transformation is asymptotically quadratic with
respect to the original size. As the 1/0 approach is meant to be applied first of all to
large scale graphs, the quadratic increase in the size of the graph is significant and
according to our experience often results in unsuccessful termination of the algorithm
due to the lack of space. This is especially the case, if the model is valid and the graph
has to be traversed completely to prove the absence of an accepting cycle. The approach

167

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

is thus mainly useful for finding counterexamples in the case the standard verification

tools fail to do so due to the lack of memory. The completeness of LTL model checking

is, however, very important. A typical scenario is that if the system is invalid and the

counterexample found, the system is corrected and the property verified again. In the
end, the graph must be traversed completely anyway.

Registration Source Code &

Intermediate Code
Source Code
User
Analyser

‘ Syntatic Corrcetor (find only Errors) |

‘ Jdem':y lhe. Logical }—>| Test Case Generation Data
unction

h 4

State-of-the-Art

Algorithm ‘ Detecting All Accepting Angles ‘

Figure 1: System Architecture
2. Detecting Accepting Cycles:

The long- term goal is to have the automated selection process choose the same
keywords based on check sum eye-tracking algorithm that an algorithm process
provides a summary of the code. The automated summarization could then be dedicated
to the summary building phase based on the initialization and declaration. The propose
method, An I/0 efficient approach for spotting the test case generation using state-of-
the-art algorithm. State-of-the-art algorithms to predict fault-detection significantly
and reduces memory access time. The detection task is to retrieve code and variables
that summarizes the lexical detection such as variable detection, index terms that are
matched with the novel summarizes. The state-of-the-art error detector module has
been designed in a way that is independent of the code size. Very less expensive
compare to existing method. It has essential contributions to the good performance of
our approach. Error detection in application is measured accurately.

3. Detecting Cycle Process Flow:
3.1. User Registration and Login:

In this module the client providing information for login, such as the user name
and password is to register to detecting of all accepting cycles. Before the registration
ensure whether providing user information which are similarity among the required
details. The authorized user can login into the system and the unauthorized user cannot
enter into the system. If the new user want to login means Compulsory registered. In the
schedule process of information stored during registration is responsible for customers
as per the service level agreements.

Registration

Inwvalid User

Verify Process

Authenticating

168

International Journal of Engineering Research and Modern Education (IJERME)
ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume I, Issue I, 2016
3.2 Program Parser:

Parsing or syntactic analysis is the process of natural language or in computer
languages, conforming to the rules. For compiled languages syntax errors occur strictly
at compile-time. A program will not compile until all syntax errors are corrected. For
interpreted languages, however, not all syntax errors can be reliably detected until run-
time, and it is not necessarily simple to differentiate a syntax error from a semantic
error. In this module the source program is given as an input for find the logical error of
the program.

Source Code

k4

Code Analyser

Program Parser

h

For Logical Error Finding

3.3 Function Finder in a Program:

Program submitted to a compiler often have errors of various kinds. So, good
compiler should be able to detect as many errors as possible in various ways and also
recover from them (i.e.) even in the presence of errors, the compiler should scan the
program and try to compile all of it. However, no compiler can do true correction.
Because, compiler won’t know the intent of the programmer due to errors. Completely
accurate error correction can be done only by the programmer. Simply the logical
function has to store in the database. Based on the database and errors the program has
compiled in the run time.

Program Parser

h

Syntatic Corrcetor (find
only Errors)

L 4
Ildentify the Logical
Function

k. J

Test case generation data

3.4 Test Case Generation Using State Art of Algorithm:

When the scanner or parser finds an error and cannot proceed, the compiler must
modify the input. Function finder has to find the logical function of the program. So that
the correct portions of the program can be pieced together and successfully processed
in the syntax analysis phase. The problem overlapped by State-of-the-art algorithm.
This technique does the job of error recovery not only from the compiler point of view
but also from the programmers point based on the function finder. It generates code to
be executed, which eases the programmer. Therefore, there should be a considerable
forethought from the ultimate solution for the all accepting cycles

169

International Journal of Engineering Research and Modern Education (IJERME)
ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume I, Issue I, 2016

Logical Function

¥
State-of-the-Art
Algorithm

h 4

Test Case Generation

To view the Program from
Compiler View Point

h

Detecting All Accepting Angles

4. A State of the Art Algorithm:
This steady state algorithm works as follows. Its parameters are the population size
m, the number § of steady state individuals, the ratio ¢ /£ of the Gaussian mutation
operator, and its mutation probabilityPm.
1. Set the time (i.e., the generation number)t := (.
2. Initialize the population P(0) using random numbers.
3. Evaluate F(0) using the given objective function/.
4. While the population has not converged and the maximum number of
generations has not been reached, do
1. Increase timet ==t + 1,
2. Construct the new generation P(#) from the old one Pt — 1);

1. Construct '(t = 1)| = & individuals using point in the middle
crossover, where individuals are chosen using a linearly scaled
roulette wheel.

2. Mutate the population using the Gaussian mutation operator (cf.

Section and the given /' ratio using the mutation probabilityPm.
3. The new population P(t) consists of the bests individuals
from £(t = 1) and the [Pt = 1)| = 8 individuals just constructed.

3. Evaluate F'(t)in parallel. Remember the best individual ever found.
4. Repeat.
5. Finally return the best individual.
Typical values for the parameters of the algorithm arem = (s =57 JE= 'U"l,
and Pm = 0.2,

The most notable difference to the classic algorithm is the use of a linearly scaled
roulette wheel for selecting promising individuals. This ensures a consistent selection
process during the whole optimization. In the selection process the right amount of
support of individuals of high fitness, i.e., individuals likely to solve the given
optimization problem, must be found. If their probability of proliferation is too close to
the probability of individuals of low fitness, the population converges slowly or not at
all. If the difference is too big, premature convergence to a local extreme is likely. The
linearly scaled roulette wheel selection provides a good compromise.

5. Discussion and Future Work:

In the paper, the interesting problem for future research. The application of the
proposed technique to memories that use scrubbing is also an interesting topic and was
in fact the original motivation that led to new technique scheme to find the runtime

170

International Journal of Engineering Research and Modern Education (IJERME)
ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume I, Issue I, 2016
errors and checking Software Requirement Specification (SRS).
6. Concluding Remarks:

Developers spend much of their time reading and browsing source code, raising
new opportunities for summarization methods. Indeed, modern code editors provide
code folding, which allows one to selectively hide blocks of code. On the other hand, the
state-of-the-art function error detector module has been designed in a way that is
independent of the code. The extension of this proof to the case of four errors would
confirm the validity of the state-of-the-art approach for a more general case, something
that has only been done through simulation.

7. Acknowledgements:

Part of this paper has regarded in [1]. This new version contains giant revision with
new algorithm designs, detecting runtime errors and checking the Software
Requirement Specification (SRS).

8. References:

1. M. Vardi and P. Wolper, “An automata-theoretic approach to automatic program
verification,” in Proc. Symp. Logic Comput. Sci., pp. 332-344, 1986.

2.]. Barnat, L. Brim, and P. Simecek, “I/O efficient accepting cycle detection,” in
Proc. Int. Conf. Comput. Aided Verification, pp. 281-293, 2007.

3. L. Brim, L. Cerna, P. Moravec, and J. Simsa, “Accepting predecessors are better
than back edges in distributed LTL modelchecking,” in Proc. Conf. Formal
Methods in Comput.-Aided Des., pp. 352-366,2004.

4. S. Edelkamp, P. Sanders, and P. Simecek, “Semi-external LTL model checking,” in
Proc. Int. Conf. Comput. Aided Verification, pp. 530-542, 2008.

5.]. Barnat, L. Brim, P. Simecek, and M. Weber, “Revisiting resistance speeds up
[/0-efficient LTL model checking,” in Proc. 14th Int. Conf. Tools Algorithms.
Construction Anal. Syst., pp. 48-62, 2008.

6. S. Edelkamp and S. Jabbar, “Large-scale directed model checking LTL,” in Proc.
13th Int. Conf. Model Checking Softw., pp. 1-18, 2006.

7. U. Stern and D. Dill, “Using magnetic disk instead of main memory in the Mur’
verifier,” in Proc. Int. Conf. Comput. Aided Verification, pp. 172-183, 1992.

8. R. Korf, “Best-first frontier search with delayed duplicate detection,” in Proc.
19th Nat. Conf. Artif. Intell., pp. 650-657,2004.

9. R. Korf and P. Schultze, “Large-scale parallel breadth-first search,” in Proc. 20th
Nat. Conf. Artif. Intell., pp. 1380-1385,2005.

10. K. Mehlhorn and U. Meyer, “External-memory breadth-first search with sublinear
[/0,” in Proc. 10th Annu. Eur. Symp. Algorithms, pp. 723-735, 2002.

11.]. Barnat, L. Brim, and J. Chaloupka, “Parallel breadth-first search LTL model-
checking,” in Proc. Conf. Autom. Softw. Eng., pp. 106-115, 2003.

12. R. Korf, “Linear-time disk-based implicit graph search,” J. ACM, vol. 55, no. 6, pp.
1-40, 2008.

13.S. Leue and M. T. Befrouei, “Counterexample explanation by anomaly detection,”
in Proc. 19th Int. Conf. Model Checking Softw., pp. 24-42, 2012.

171

