

MAJORIZATION OF MATRICES

S. Manimaran*, V. Chinnadurai & A. Swaminathan*****

* Associate Professor, Department of Mathematics, SRMKV College,
Chennai, Tamilnadu

** Associate Professor, Department of Mathematics, Annamalai University,
Annamalainagar, Tamilnadu

*** Associate Professor, Department of Mathematics, Aksheyaa College of
Engineering, Chennai, Tamilnadu

Cite This Article: S. Manimaran, V. Chinnadurai & A. Swaminathan, "Majorization of Matrices", International Journal of Engineering Research and Modern Education, Volume 2, Issue 2, Page Number 65-68, 2017.

Copy Right: © IJERME, 2017 (All Rights Reserved). This is an Open Access Article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract:

It is shown that under certain conditions the column majorization of matrices is reversed for the column majorization of their corresponding Moore-Penrose inverses and preserved for the column majorization of their powers. The condition for column majorization of block matrices is determined.

Index Terms: Majorization & Moore-Penrose inverse

1. Introduction:

Let $C^{m \times n}$ denote the space of $m \times n$ complex matrices. If $A \in C^{m \times n}$ then the Moore-Penrose inverse A^+ of A is the unique solution to the equations:

$$AXA = A, \quad XAX = X, \quad (AX)^* = AX \quad \text{and} \quad (XA)^* = XA \quad [2, p.7].$$

A square matrix A is called *EP* if $R(A) = R(A^*)$ or equivalently $AA^+ = A^+A$, where $R(A)$ denotes the range space of A. A matrix A is called *EP_r* if A is EP and is of rank r.

Let $R^{m \times n}$ denotes the space of $m \times n$ real matrices. For any column vector $x \in R^n$, let $x_{[1]}, x_{[2]}, \dots, x_{[n]}$ denote the coordinates of x arranged in decreasing order of magnitude: $x_{[1]} \geq x_{[2]} \geq \dots \geq x_{[n]}$. We shall write $x \downarrow = (x_{[1]}, x_{[2]}, \dots, x_{[n]})^t$ where t denotes the transpose. If $x, y \in R^n$, we say that y is majorized by x, denote by $y \prec x$ if

$$\sum_{i=1}^k y_i = \sum_{i=1}^k x_i, \quad \text{for } 1 \leq k \leq n-1, \quad \text{and} \quad \sum_{i=1}^n y_i = \sum_{i=1}^n x_i$$

Also y is said to be majorized by x if and only if there exists a doubly stochastic matrix M such that $y = Mx$ [4, p.7-12]. Throughout this paper we consider only real matrices.

2. Majorization of Matrices:

The majorization of vectors is extended to matrices as follows:

Definition 1:

Let A and B be $m \times n$ real matrices. Then A is said to be column majorized by B, denoted by $A \prec^c B$ if and only if $A = MB$ where M is a doubly stochastic matrix of order m.

We note that the column majorization of matrices is equivalent to the majorization of the transpose of the corresponding matrices [4, p.430].

$$\begin{aligned} \text{i.e. } A \prec^c B &\Leftrightarrow A = MB, \quad \text{where M is doubly stochastic} \\ &\Leftrightarrow A = MB \quad \text{for all } i, \text{ where } A_i \text{ is the } i^{\text{th}} \text{ column of A} \\ &\Leftrightarrow A_i^t = B_i^t \quad \text{for all } i \\ &\Leftrightarrow A^t \prec B^t. \end{aligned}$$

Lemma 1:

Let A, B be *EP_r* matrices and $A \prec^c B$. Then $R(A) = R(B)$ and $(AB)^+ = B^+A^+$.

Proof:

$A \prec^c B \Rightarrow A = MB \Rightarrow N(B) \subseteq N(A) \quad \text{where } N(A), \text{ denotes the null space of } A.$

Since A and B are EP_r , $R(A) = R(B)$, then by theorem 3 of [1], AB is EP_r and by theorem 4 of [1], we get $(AB)^+ = B^+A^+$.

Lemma 2:

Let A be an EP matrix. Then

$$(i) A \prec^c A^+A \Leftrightarrow A^+A \prec^c A^+$$

$$(ii) A^+A \prec^c A \Leftrightarrow A^+ \prec^c A^+A$$

Proof:

$$\begin{aligned} . (i) A \prec^c A^+A &\Leftrightarrow A = MA^+A \\ &\Leftrightarrow AA^+ = MA^+AA^+ \text{ (on post multiplication by } A^+ \text{ or } A) \\ &\Leftrightarrow AA^+ = MA^+ \text{ (since } A \text{ is } EP \text{ and } A^+AA^+ = A^+) \\ &\Leftrightarrow A^+A \prec^c A^+ \end{aligned}$$

Hence the result (i). Similarly (ii) can be proved.

Remark 1:

In particular, if A is nonsingular, then $A \prec^c I \Leftrightarrow I \prec^c A^{-1}$. Hence $A \prec^c I \Rightarrow A \prec^c A^{-1}$. If the column sums of A is one, then $I \prec^c A^{-1}$, however A need not be a doubly stochastic matrix.

Remark 2:

We note that the condition on A cannot be relaxed in the above lemma 2. For example,

$$\begin{aligned} A &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, & A^+ &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \\ AA^+ &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, & A^+A &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

Here A is not EP , however $A \prec^c A^+A$ and $A^+A \prec^c A^+$.

Remark 3:

For any EP matrix A , if $A \prec^c I$, then $A = AA^+A \prec^c A^+A$. Hence by lemma 2 $A \prec^c A^+A \prec^c A^+$. In particular if A is EP and doubly stochastic, then $A \prec^c I$ holds automatically and hence $A \prec^c A^+A \prec^c A^+$.

Theorem 1:

If A is EP_r and B is symmetric idempotent with rank r , then

$$(i) A \prec^c B \Leftrightarrow B^+ \prec^c A^+$$

$$(ii) B \prec^c A \Leftrightarrow A^+ \prec^c B^+$$

$$(iii) A \prec^c B \Rightarrow A \prec^c A^+$$

$$(iv) B \prec^c A \Rightarrow A^+ \prec^c A$$

Proof:

Since A is EP_r and B is symmetric idempotent with rank r , both A and B are EP_r . By lemma 1, $R(A) = R(B) \Rightarrow A^+A = B^+B = B$ (since A^+A is the projection onto $R(A)$ along $N(A)$). Then (i) and (ii) follow from lemma 2. (iii) and (iv) follow from (i) and (ii) respectively and $B = B^+$.

Corollary 1:

Let A be EP_r , B be symmetric idempotent with rank r and $A \prec^c B$. Then $A^n \prec^c B \prec^c (A^n)^+$ for any positive integer n .

Proof:

Since $A \prec^c B$ and by theorem 1 (i), $B = B^+ \prec^c A^+$. Hence, $A \prec^c A^+$ follows from theorem 1 (iii). Since B is symmetric idempotent and by theorem B2 of [4p.433],

$A^2 \prec^c A^T A = B^T B = B$. Thus, $A^n \prec^c B$ is true for $n=2$. Now, $A^3 \prec^c BA = BB^T A = AA^T A = A \prec^c B$. Hence $A \prec^c B$. Thus, it is true for $n=3$. By continuing in this manner we can show that $A \prec^c B \Rightarrow A^n \prec^c B$ for any positive integer n . $B \prec^c (A^n)^T$ follows from $A^n \prec^c B$ and theorem 1(i). Hence the corollary.

Theorem 2:

Let A and B be EP_r matrices such that $AB = BA$. Then $A \prec^c B \Leftrightarrow B^+ \prec^c A^+$.

Proof:

Since A, B are EP_r and $A \prec^c B$, by lemma 1, $R(A) = R(B) = R(B^+)$. Since A and B^+ are EP_r and $R(A) = R(B^+)$, by theorem 3 and 4 of [1], AB^+ is EP_r and $(AB^+)^+ = BA^+$

Thus, $AB^+ = B^+ A$ (by theorem 2 of [5]) (1)

$$\begin{aligned} A \prec^c B &\Rightarrow AB^+ \prec^c BB^+ && \text{(by theorem B2 of [4,p.433])} \\ &\Rightarrow B^+ A \prec^c BB^+ && \text{(by (1))} \\ &\Rightarrow BB^+ \prec^c (B^+ A)^+ && \text{(by theorem 1(i) applied to } BB^+ \text{)} \\ &\Rightarrow B^+ B \prec^c A^+ B \\ &\Rightarrow B^+ BB^+ \prec^c A^+ BB^+ \\ &\Rightarrow B^+ \prec^c A^+ \end{aligned}$$

Conversely, since A^+ and B^+ are EP_r . And by theorem 2 of [5], $BA^+ = A^+ B$ is of rank r . In the above part, replacing A by B^+ and B by A^+ and using $(A^+)^+ = A, (B^+)^+ = B$,

We get $B^+ \prec^c A^+ \Rightarrow A \prec^c B$. Hence the theorem.

REMARK 4:

The condition on A and B that they have the same rank, but $AB \neq BA$ cannot hold in theorem 2. For example, consider,

$$\begin{aligned} A &= 1/3 \begin{pmatrix} 12 & 3 & 3 \\ 11 & 12 & 10 \\ 7 & 12 & 11 \end{pmatrix}; \quad B = \begin{pmatrix} 5 & 0 & 0 \\ 3 & 6 & 5 \\ 2 & 3 & 3 \end{pmatrix} \\ A^+ &= 1/45 \begin{pmatrix} 12 & 3 & -6 \\ -51 & 111 & -87 \\ 48 & -123 & 111 \end{pmatrix}; \quad B^+ = 1/15 \begin{pmatrix} 3 & 0 & 0 \\ 1 & 15 & -25 \\ -3 & -15 & 30 \end{pmatrix} \end{aligned}$$

Here $AB \neq BA$, however $A \prec^c B$, A and B are EP_r with rank 3 and $B^+ \prec^c A^+$.

Corollary 2:

Let A and B be EP_r matrices and $A \prec^c B$ such that $AB = BA$. Then $A^n \prec^c B^n$ for any positive integer n .

Proof:

By theorem B2 of [4, p.433] and $A \prec^c B$ we have $AB^+ \prec^c BB^+$. Since BB^+ is symmetric idempotent by theorem 1 (iii), we get

$$AB^+ \prec^c (AB^+)^+ = BA^+. \text{ By lemma 1, } AB^+ A \prec^c BA^+ A = B.$$

Using (1), we see that $AAB^+ \prec^c B$. By lemma 1, $A^+ A = B^+ B$.

Hence $A^2 B^+ B \prec^c B^2 \Rightarrow A^2 \prec^c B^2$. Thus the corollary is true for $n=2$.

Now, $A^2 \prec^c B^2 \Rightarrow A^3 \prec^c B^2 A = AB^2 \prec^c BB^2 = B^3$

(Since $A \prec^c B \Rightarrow AB^2 \prec^c BB^2$). Thus it is true for $n=3$. By continuing in this manner, we can show that $A \prec^c B \Rightarrow A^n \prec^c B^n$ for any positive integer n . Hence the corollary.

Theorem 3:

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $\text{rank } M = \text{rank } A$ and $L = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$ with

rank $L = \text{rank } E$ be $n \times n$ real matrices such that $A^+B = E^+F$ (2)

Then $A \prec^c E$ and $C \prec^c G$ i.e., $A = R_1E$ and $C = R_2G \Leftrightarrow M \prec^c L$ with doubly stochastic matrix R of

the form $\begin{pmatrix} O & R_1 \\ O & R_2 \end{pmatrix}$

Proof:

Since $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $\text{rank } M = \text{rank } A$, where A is $k \times k$ and D is $(n-k) \times (n-k)$

matrices, by corollary in [3] it follows that $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$ and $D = CA^+B$ or equivalently, $C = CA^+A$, $B = AA^+B$ and $D = CA^+B$.

For L , we have $G = GE^+E$, $F = EE^+F$ and $H = GE^+F$. (3)

$$\begin{aligned}
 \text{Now, } A \prec^c E \text{ and } C \prec^c G &\Leftrightarrow \begin{pmatrix} A & O \\ C & O \end{pmatrix} \prec^c \begin{pmatrix} E & O \\ G & O \end{pmatrix} \\
 &\Leftrightarrow \begin{pmatrix} A & O \\ C & O \end{pmatrix} \begin{pmatrix} I & A^+B \\ O & I \end{pmatrix} \prec^c \begin{pmatrix} E & O \\ G & O \end{pmatrix} \begin{pmatrix} I & A^+B \\ O & I \end{pmatrix} \\
 &\Leftrightarrow \begin{pmatrix} A & B \\ C & D \end{pmatrix} \prec^c \begin{pmatrix} E & F \\ G & H \end{pmatrix} \\
 &\Leftrightarrow M \prec^c L
 \end{aligned}$$

Hence the theorem.

References:

1. Baskett .T.S. and Katz .I.J., Theorems on products of EP_r matrices, Linear Algebra Appl. 2 (1969), 87-103.
2. Ben Israel .A. and Greville .T.N.E., Generalized Inverses: Theory and Applications, Wiley (1974).
3. Carlson .D., Haynsworth .E. and Markham .Th., A generalization of the Schur complement by means of the Moore-Penrose Inverse, SIAM J. APPL. Math. 26 (1974), 169-175.
4. Marshall .A.W. and Olkin .I., Inequalities :Theory of majorization and its Applications, Academic Press (1979).
5. Pearl .M.H., On generalized Inverses of matrices, Proc. Camb. Phil. Soc. 62 (1966), 673-677.