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Abstract: 

It is shown that under certain conditions the column majorization of matrices is reversed for the column 

majorization of their corresponding Moore-Penrose inverses and preserved for the column majorization of their 

powers. The condition for column majorization of block matrices is determined. 

Index Terms: Majorization & Moore-Penrose inverse 

1. Introduction: 

Let
nmC 

 denote the space of nm  complex matrices. If
nmCA   then the Moore-Penrose inverse 

A of A is the unique solution to the equations: 

AXAXXXAXAAXA  )(,,  and  XAXA )( ].7.,2[ p  

A square matrix A is called )()(  ARARifEP  or equivalently ,AAAA    where )(AR  denotes 

the range space of A.A matrix A is called rEP  if A is EP and is of rank r. 

Let 
nmR 

 denotes the space of nm real matrices.  For any column vector
nRx , let ][]2[]1[ ...,, nxxx denote 

the coordinates of x  arranged in decreasing order of magnitude: ][]2[]1[ ... nxxx  . We shall write

t

nxxxx ),..,( ][]2[]1[ where t denotes the transpose.  If ,, nRyx  we say that y is majorized by x, 

denotey x if 
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Also y is said to be majorized by x if and only if there exists a doubly stochastic matrix M such that  Mxy   

[4, p.7-12].  Throughout this paper we consider only real matrices. 

2. Majorization of Matrices:  

  The majorization of vectors is extended to matrices as follows: 

Definition 1:  

Let A and B be nm real matrices.  Then A is said to be column majorized by B, denoted by BA c  

if and only if MBA   where M is a doubly stochastic matrix of order m . 

 We note that the column majorization of matrices is equivalent to the majorization of the transpose of 

the corresponding matrices [4, p.430]. 

i.e. ,MBABA c      where M is doubly stochastic 

MBA   for all i, where iA is the  
thi column of A 
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Lemma 1: 

Let BA,  be rEP  matrices and BA c .  Then )()( BRAR  and .)(   ABAB  

Proof: 

,)()()( ANwhereANBNMBABA c   denotes the null space of .A   
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Since ,)()(, BRAREPareBandA r  then by theorem 3 of [1], AB  is rEP and by theorem 

4 of [1], we get .)(   ABAB  

Lemma 2:  

Let A be an EP  matrix.  Then 
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Proof:
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Hence the result (i).  Similarly (ii) can be proved. 

Remark 1: 

In particular, if A is nonsingular, then
1 AIIA cc  . Hence 

1 AAIA cc   .  If the 

column sums of A is one, then 
1AI c , however A need not be  a doubly stochastic matrix. 

Remark 2: 

We note that the condition on A cannot be relaxed in the above lemma 2.  For example, 
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Here A is not EP, however
 AAAandAAA cc  . 

Remark 3: 

For any EP matrix A, if IA c  , then AAAAAA c   .   Hence by lemma 2 
 AAAA cc 

In particular if A is EP and doubly stochastic, then IA c holds automatically and hence 
 AAAA cc    

Theorem 1: 

If A is rEP   and B is symmetric idempotent with rank r, then 
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Proof: 

Since A is rEP and B is symmetric idempotent with rank r, both A and B are .rEP   By lemma 1,

BBBAABRAR  )()(  (since AA
 is the projection onto )(AR  along )(AN .  Then (i) and (ii) 

follow from lemma 2.  (iii) and (iv) follow from (i)  and (ii) respectively and
BB . 

Corollary 1: 

Let A be rEP ,B be symmetric idempotent with rank r and BA c . Then
)( nccn ABA   for any 

positive integer n. 

Proof: 

Since BA c and   by theorem 1 
 ABBi c,)( . Hence, 

AA c follows from theorem 1 (iii).   

SinceB is symmetric idempotent and by theoremB2 of [4p.433], 
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 A
2 c AA = BB = B.  Thus, A

n c B is true for n=2.  Now, A
3 c  BA = BBA = AAA = A

c B . Hence A
c B.  Thus , it is true for n=3.  By continuing in this manner we can show that  A

c BA
n c  B for any 

positive integer n.  B
c  (A

n
) follows from A

n c B  and theorem 1(i).  Hence the corollary.  

Theorem 2: 

Let  A  and B be rEP matrices such that  .BAAB  Then  
 BBA c Ac 

. 

Proof: 

Since BA, are rEP  and BA c , by lemma 1 , ).()()(  BRBRAR   Since A and 
B  are 

rEP  and ),()(  BRAR  by theorem 3 and 4 of [1], 
AB  is rEP  and

  BAAB )(  

Thus, ABAB         (by theorem 2 of [5])    (1) 
 BBABBA cc    (by theorem 2B  of [4,p.433]) 

 
 BBAB c   (by (1)) 

 
 )( ABBB c                 (by theorem 1(i) applied to 

BB ) 

 BABB c    
 BBABBB c  

 
 AB c  

Conversely, since 
A  and 

B  are .rEP  And by theorem 2 of [5], BABA    is of    rank .r In the above 

part, replacing A  by 
B  and B  by 

A  and using  ,)(,)( BBAA  

 

We get   .BAAB cc  
Hence the theorem. 

REMARK 4: 

The condition on A  and B  that they have the same rank, but BAAB  cannot hold in theorem 2. 

For example, consider, 

:
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Here ,BAAB   however ,BA c A  and B   are  rEP  with rank 3 and . AB c  

Corollary 2: 

Let  A  and B  be rEP  matrices and BA c such that .BAAB    Then
ncn BA   for any 

positive integer .n  

Proof: 

By theorem 2B  of [4, p.433] and BA c  we have  . BBAB c  Since 
BB  is symmetric 

idempotent by theorem 1 (iii), we get  

.)(   BAABAB c   By lemma 1, .BABAAAB c    

Using (1), we see that .BAAB c
By lemma 1, .BBAA    

Hence .2222 BABBBA cc  
Thus the corollary is true for n=2. 

Now,
3222322 BBBABABABA ccc    

(Since ).22 BBABBA cc    Thus it is true for n 3.  By continuing in this manner, we can show that

ncnc BABA    for any positive integer .n   Hence the corollary. 

Theorem 3: 

Let 
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ErankLrank   be nn  real matrices such that FEBA      (2) 

Then EA c and GC c .i.e., ERA 1 and MGRC  2 Lc  with doubly stochastic matrix R  of 

the form 

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Proof: 

Since 









DC

BA
M with ,ArankMrank   where A  is .kk and D is )()( knkn   

matrices, by corollary in [3] it follows that ),()( CNAN   )()(   BNAN  and BCAD   

or equivalently,  BAABACAC   ,  and BCAD  . 

For ,L we have  FEEFEGEG   ,  and .FGEH     (3) 
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Hence the theorem. 
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