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Abstract:

Heart failure is a serious cardiovascular condition leading to life threatening events, poor prognosis,
and degradation of quality of life. According to the present evidences suggesting association between low
testosterone level and prediction of reduced exercise capacity as well as poor clinical outcome in patients with
heart failure, we sought to determine if testosterone therapy improves clinical and cardiovascular conditions as
well as quality of life status in patients with stable chronic heart failure. In the random motion on Poincare half
plane, the hyperbolic distance is analyzed and also in the case where returns to the starting point is admitted.
The mean hyperbolic distance in all versions of the motion envisaged and it is used to find the role of
Testosterone in improvement of functional capacity and quality of life in heart failure patients.

Key Words: Testosterone Therapy (TT), Congestive Heart Failure (CHF), Poincare Half Plane (PHP), Uniform
Distribution.
1. Introduction:

A noticeable evolution of therapeutic concepts has taken place with a variety of cardiac and hormonal
drugs with the aim of improving patient’s survival, preventing sudden death, and improving quality of life [8] &
[9]. In a significant proportion of heart failure patients, testosterone deficiency as an anabolic hormonal defect
has been proven and identified even in both genders [10]. This metabolic and endocrinological abnormality is
frequently associated with impaired exercise tolerance and reduced cardiac function [4]. For this reason,
combination therapy with booster cardiovascular drugs and testosterone replacement therapy might be very
beneficial in heart failure patients. The physiological pathways involved in these therapeutic processes have
been recently examined. First, elevated level of testosterone following replacement therapy is major indicator
for increase of peak V0, in affected men with heart failure explaining improvement of exercise tolerance in
these patients [11]. Furthermore, testosterone replacement therapy can reduce circulating levels of inflammatory
mediators including tumor necrosis factor « (TNF — a) and interleukin (/L) — 18, as well as total cholesterol
in patients with established simultaneous coronary artery disease and testosterone deficiency.

According to the present evidences suggesting association between low testosterone level and
prediction of reduced exercise capacity as well as poor clinical outcome in patients with heart failure, we sought
to determine if testosterone therapy improves clinical and cardiovascular conditions as well as quality of life
status in patients with stable chronic heart failure. A random motion on Poincare half plane is studied. The mean
hyperbolic distance in all versions especially the motion at finite velocity on the surface of a three dimensional

sphere is investigated. In this case we use
At
_e? L A2 =42 A2 4c? LJa2=ac? _ /A2 4c? ]
E(t) = — [(ez + ez )+7T_402 (ez ez )

to find the testosterone therapy (TT) on functional capacity, cardiovascular parameters (CVP), and quality of life
in patients with congestive heart failure (CHF).

2. Notations:
TNF — a - Tumor Necrosis Factor a
IL - Interleukin
TT - Testosterone Therapy
cvP - Cardiovascular Parameters
CHF - Congestive Heart Failure
6MWD - 6 Minute Walk Distance

3. Motions with Jumps Backwards to the Starting Point:

Motion on hyperbolic spaces have been studied since the end of the Fifties and most of papers devoted
to them deal with the so called hyperbolic Brownian motion [1] [6] & [7]. More recently also works concerning
two dimensional random motions at finite velocity on planar hyperbolic spaces have been introduced and
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analyzed. While in the corresponds of motion are supposed to be independent, we present here a planar random
motion with interacting components. Its counterpart on the unit sphere is also examined and discussed.

The space on which our motion develops is the Poincare upper half plane Hy = {(x,y) : y > 0} which
is certainly the most popular model of the Lobachevsky hyperbolic space. In the space H; the distance between
points is measured by means of the metric

dx2+dy2

ds? = Z &

The propagation of light in a planar non homogeneous medium, according to the Fermat principle,
must obey the law
sin a(y)
c(xy)
Where a(y) is the angle formed by the tangent to the curve of propagation with the vertical at the point with
ordinate y. In the case where the velocity c¢(x, y) = y is independent from the direction, the light propagates on
half circles as in Hf.
It is shown that the light propagates in a non homogeneous half plane HJ with refracting index
n(x,y) = 1/y with rays having the structure of half circles. Scattered obstacles in the non homogeneous
medium cause random deviations in the propagation of light and this lead to the random model analyzed below.
The position of points in H5 can be given either in terms of Cartesian coordinates (x, y) or by means of
the hyperbolic coordinates (1, a). In particular, n represents the hyperbolic distance of a point of HJ from the
origin O which has Cartesian coordinates (0, 1). We recall than 7 is evaluated by means of (1) on the arc of a
circumference with center located on the x axis and joining (x,y) with the origin 0. The upper half
circumference centered on the x axis represents the geodesic lines of the space H; and play the same role of the
straight lines in the Euclidean plane [2] & [3].
The angle a represents the slope of the tangent in O to the half circumference passing through (x,y).
The formulas which relate the polar hyperbolic coordinates (1, @) to the Cartesian coordinates (x, y) are

sinh 1 cos a
x:—n T]>0

cosh n—sinh 7 sin a

= cost

)

1
y= cosh n—sinh 7 sin a

for each value of « the relevant geodesic curve is represented by the half circumference with equation

- ©)

COSZ(Z
fora = % we get from (3) the positive y axis which also is a geodesic curve of H; . From (2) it is easy to obtain
the following expression of the hyperbolic distance n of (x, y) from the origin O:
x2+y2+1
N @
from (4) it can be seen that all the points having hyperbolic distance n from the origin O from a Euclidean
circumference with center at (0, cosi n) and radius sinh 7.

The expression of the hyperbolic distance between two arbitrary points (x;,y;) and (x;,y,) is instead
given by

-I<a<z
2 2

(x —tana)? +y% =

coshn =

e N200 2002
coshn = Cax)Hyi+ys xzz})} ;y1+y2 (5)
1y2
In fact, by considering the hyperbolic triangle with vertices at (0, 1), (x4, y;) and (x5, y2), by means of
the Carnot hyperbolic formula it is simple to show that the distance n between (x;,y;) and (x,, y,) is given by
coshn = coshn; coshn, — sinh n; sinhn, cos(a; — a3) (6)
where (11, @;) and (n,, a;) are the hyperbolic coordinates of (x;,y;) and (x,, y,) respectively. From (3) we
obtain that
2,.2_
tana; = % fori=1,2,.. (7)
1
and in view of (4) and (7), after some calculations, formula (5) appears. Instead of the elementary arguments of
the proof above we can also invoke the group theory which reduces (x4, y;) to (0, 1).

fa, — a, = %the hyperbolic Carnot formula (6) reduces to the hyperbolic Pythagorean theorem

coshn = coshn; coshn,
which plays an important role in the present paper.

The motion considered here is the non Euclidean counterpart of the planar motion with orthogonal
deviations studied. The main object of the investigation is the hyperbolic distance of the moving point form the
origin. We are able to give explicit expressions for its mean value, also under the condition that the number of
changes of direction is known. In the case of motion in H; with independent components an explicit expression
for the distribution of the hyperbolic distance n has been obtained. Here, however, the components of motion
are dependent and this excludes any possibility of finding the distribution of the hyperbolic distance n(t).

21



International Journal of Engineering Research and Modern Education (IJERME)
Impact Factor: 7.018, ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume 3, Issue 2, 2018
We obtain the following explicit formula for the mean value of the hyperbolic distance which
reads

E{coshn(t)} = eizl {cosh—\/}L2 +4c? + J—

where T(t) is a telegraph process with parameters 7 Land c.

The telegraph process represents the random of a particle moving with constant velocity and changing
direction at Poisson paced times.

This section is devoted to motions on the Poincare half plane where the return to the starting point is
admitted and occurs at the instants of changes of direction. The mean distance from the origin of these jumping
back motions is obtained explicitly by exploiting their relationship with the motion without jumps. In the case
where the return to the starting point occurs at the Poisson event T;, the mean value of the hyperbolic distance
141 (t) reads

sinh = v,12 + 4c? } EeT®

2 sinh %\/m
\/m Sinh%

The next section considers the motion at finite velocity, with orthogonal deviations at Poisson times, on
the unit radius sphere. The main results concern the mean value E{cos d(PyP;)}, where d(P,P;) is the distance
of the current point P; from the starting position P,. We take profit of the analogy of the spherical motion with
its counterpart on the Poincare half plane to discuss the different situations due to the finiteness of the space
where the random motion develops.

We here examine the planar motion dealt with so far assuming now that, at the instants of changes of
direction, the particle can return to the starting point and commence its motion from scratch.

The new motion and the original one are governed by the same Poisson process so that changes of
direction occur simultaneously in the original as well as in the new motion starting a fresh from the origin. This
implies that the arcs of the original sample path and those of the new trajectories have the same hyperbolic
length. However, the angles formed by successive segments differ in order to make the hyperbolic Pythagorean
Theorem applicable to the trajectories of the new motion.

In order to make our description clearer, we consider the case where, in the interval (0,t),N(t) =n
Poisson events (n > 1) occur and we assume that the jump to the origin happens at the first change of direction
i.e., at the instant t;. The instants of changes of direction for the new motion are

, ,tl; =t — b
where k = 0,1, ... ,nwith t, = 0 and t,, = t — t;and the hyperbolic lengths of the corresponding arcs are
c(ty = tye1) = c(tsr — ti)
Therefore, at the instant t, the hyperbolic distance from the origin of the particle performing the motion which
has jumped back to O at time tlis
[T}, cosh c(tk — ty_1) =II}-; cosh C(tk+1 —t) =I1tE5 coshe(ty, — ty_y) (8)
where 0 =ty <t; < <t,=t—t; and ty,q =t +t;. Formula (8) shows the first step has been deleted.
However, the distance between the position P, and the origin O of the moving particle which jumped back to O
after having reached the position Py, is different from the distance of P, from P; since the angle between
successive steps must be readjusted in order to apply the hyperbolic Pythagorean Theorem.

If we denote by T; the random instant of the return to the starting point (occurring at the first Poisson

event), we have that

E{Cosh UGS, | N(t) = n} = E{coshr)(t - T1)1{Tlst}| N(t) = n}
= f(f E{coshn(t — Tz eary | N(@®) = n}dt
= [ E{coshn(t = )| Ty = t, N(¢) = n}Pr{Ty € dt;| N() =n}dt;  (9)
By observing that
E{coshn(t — T1)| T, =t,N(t) = n} = E{coshn(t — t1)| N(t)=n-— 1}

(n=1)!
(t tOn- 1 n 1(t )

E{cosh 11 (t) | N(t) = 1} =

and that

_ n—1
Pr{Ty € dt;| N(t) =n} = = (t(nti)l)! dt,
with 0 < t; < t, formula (9) becomes

E{coshn; () Iiy(osny | N(E) = n} = 52 f) oo (¢ — t1)dty (10)
From (10) we have that the mean hyperbolic distance for the particle which returns to O at time Ty, has the form:

E{coshn, ()| N(t) = 1} = 2 A [ Lo (E— t)dt

Jy eXCE(t — t))dt

Pr {N (t)>1}

Pr{N(t)>1}
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We give here, a general expression for the mean value of the hyperbolic distance of a particle which
returns to the origin for the last time at the k™ Poisson event T,. We shall denote the distance by the following
equivalent notation n(t — T},) = n,(t) where the first expression underlines that the particle starts from scratch
at time T, and then moves away for the remaining interval of length t — T}. In the general case we have the
result stated in the next theorem.
Theorem: 3.1
If N(t) = k, then the mean value of the hyperbolic distance 7, is equal to
Efcosh, ()| N(O) = k} = =2 Jy B — t)dt

Pr{N(t)=k}~0
/lk —At

t
= s o 1)'f eI IE (t — t,)dty, (11)

t/A2 +4c2 n p) sin htx//12+4c }
2 VAZ+4c?

—At
where E(t) = e 2 {cosh
Proof:

We start by observing that
E{cosh MO | N(t) = k} =Yk E{cosh e (O Iy 0)=n) | N(t) = k}
0 P (N(t)= )
= Y- E{coshny () In(ysiy | N (£) = n} m
=Yr i E{cosh e (O Iy )=k | N(t) = n}PT{N(t) = n| N(t) = k} (12)
Since T, = inf{t: N(t) = k}, the conditional mean value inside the sum can be developed as follows
E{cosh e (O Iy )=k | N(t) = n} = E{cosh n(t — Ti)lgr, <ty | N(t) = n}
= fot E{coshn(t — T) Iz ear,y | N(©) = n}dt
= [ Efcoshn(t — T)| Ty, = t;,, N(¢) = n}Pr{T} € dt, | N(t) = n}dt,
Now we consider E, (t) = :—;In ® (13)
Using the above condition (13), we have that
E{coshn(t — T,) | Ty = t,, N(t) = n} = E{coshn(t — ;)| N(t — t;,) = n — k}

(n—k)!
= (t_ntkmln—k(t = t)

and on the base of well known properties of the Poisson process we have that
| (t— n—k k-1
Pr{T, € dt,|N(t) =n} = f—n—(t(nti)! T dt
where 0 < t;, < t. In conclusion we have that
! 1 t k—
Ef{coshny () Iy ysiy | N(£) = n} = :—n(k_l)! Jo & o (t — ) dt
and, from this and (12), it follows that

E{coshn, ()| N(8) = k} = ;- ktn o 1)|f te~ i (& = Bt ot
e~ Atk

toAt—ty) k-1 _
= ORI 1)|f et E (t — ty,)dty
Finally, in view of Cauchy formula of multiple integrals, we obtain that
—Atlk t Alt=ty) pk—1 _ _ e_’lt/lk t t A(t=tp) _
reosam=D: Jo 1)'f et eELE (t — ) dty, _7PT{N(t)Zk}f0 dt, ...ftk_le WE(t — t,)dty
Theorem: 3.2
The mean of the hyperbolic distance of the moving particle returning to the origin at the k™ change of
direction is

e —At (t )n

_ Ake—At i_ eBt k1 i_i th=i-1
E{coshn,(t) | N(@) =k} = o {Ak_l ot Xic1 (Bi Ai) (k—i—l)!} (14)
where A =2 (1 + VA% + 4cZ) and B = (1 — VAZ + 4c?)

for k = 1, the sum in (14) is intended to be zero.
Proof:

We can prove (14) by applying both formulas in (11). We start our proof by employing the first one:

E{coshn, ()| N(2) = k} = mft dty ... f;k_l e IE(t — ty)dty (15)

e—At/2 2 2
Now consider E(t) = £’” {a;_;/i::c (/2NTTwae? % A —(t/Z)\/A_2+4c} (16)

Therefore in view of (16), formula (15) becomes
E{cosh 1 (t) | N(t) = k} =
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ket ft dt ft I eAt=ty)/2 /1+\//12+4’Cze(t—tk/2)\/m+
Prin@=kyJo T ey 2 JiZrac?
Me_(f_fk/z)vlz*"‘cz] E(t — tk)} dtk

JiZ+4c?
By introducing A and B as in (14), we can easily determine the k fold integral
Eleosh DIV 2 ) = i de - (a0 = per Wl
= \/#ﬂgv(mﬁ dt, "'fttk,z{eA(t_tk_l) — eBC-ti-0)dr,
- A(t—ty— B(t—t)_
- \//12+4j§;rl{jv(t)2k} fot dty - fttk% {8 ( Ak 2o Bk - + % - %} dty—

At the jt" stage the integral becomes
E{cosh N () | N(t) = k} =

Ake—At t t eA(t_tk*i) eB(t_tk’j) j—1(1 1 (f—tk—j)jiii1
JaZiactpr {N(t)zk}fo dt; ... ftk_]-_l{ Y T WP (E B F) G—i—1)
At the (k — 1)*'stage the integral becomes
E{coshnk(t) | N(t) = k} =

Akeflt J_t dt {eA(tftﬂ _ eB(tftl) + ]'(_2 (l _ i) (t_tl)k—z}
aZ+ac2pr (N30 LU ak=2 Bk=2 =1\l 4l) (k-i-2)!

At the k" integration we obtain formula (14).

By means of the second formula in (11) and by repeated integrations by parts we can obtain
again result (14).
4. Motion at Finite Velocity on the Surface of a Three Dimensional Sphere:

Let P, be a point on the equator of a three dimensional sphere. Let us assume that the particle starts
moves from P, along the equator in one of the two possible directions (clockwise or counter clockwise) with
velocity c.

At the first Poisson event (occurring at time 77;) it starts moving on the meridian joining the north pole
2, with the position reached at time 77;(denoted by 2;) along one of the two possible directions.

At the second Poisson event the particle is located at #, and its distance from the starting point 2 is
the length of the hypotenuse of a right spherical triangle with cathetus 2,2, and 24 /7,; the hypotenuse belongs
to the equatorial circumference through 2, and 2,.

Now the particle continues its motion (in one of the two possible directionsO along the equatorial
circumference orthogonal to the hypotenuse through Z4 and 2, until the third Poisson event occurs.

In general, the distance & (2,/2,) of the point 2, from the origin 2, is the length of the shortest arc of
the equatorial circumference through 2, and #,and therefore it takes values in the interval [0, z]. Counter
clockwise motions cover the arcs in [— 7, O] so that the distance is also defined in [0, 7] or in [-7 /2,7 /2]
with s shift that avoids negative values for the cosine.

By means of the spherical Pythagorean relationship we have that the Euclidean distance &(2y/25)
satisfies

cos @ (PyPy) = cos d(PyPq)cos d (P P5)
and, after three displacements,
cos @(PyP3) = cos d(PyP,) cos d(PyP3)
= €0S & (PyP1)cos d(P1P,)cos d(PyPs3)
After 7 displacement the position 2, on the sphere at time ¢ is given by
cosd(Pol,) =[1jo1c0sd (PP y_1)cosd (P, P,)
Since Z(2, 2 ,_1) is represented by the amplitude of the arc run in the interval (t i ,(_1), it results

d(PyPr)=c(t 4t 4y)
The mean value £{cos @(~,2,)| M(¢) = n}is given by
£,(t) = F{cosd (PoP)| M) = n}
= :—ifot ar 1ft[1 ar , ...f;ﬂ_l ar ,T13cosc (£ 4.t 4_p)
=L H,(2)
Where #4=0,¢,,1 = ¢ and
Hye)=fy a1 J] o f] @ ,TjEcose (£t )
The mean value £{cos &Z(~y/2,)} isgiven by
£ () = £{cos d (PP, )}
=Y o L{cosd(PoP )| M) =n}Pr {N(¢) = n}
=e " Yu A" H,(2)
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By steps similar to those of the hyperbolic case we have that Z,(¢), z = 0, satisfies the difference differential
equation
2
Lty =ty = P,
where #y(z ) = cos c¢ and therefore we can prove the following:

Theorem: 4.1
The mean value £'(¢) = £{cos & (P, 7, )} satisfies
2 a 2
?E——jd—i—fi (17)
with initial conditions
{ £0)=1 18)
d
—£(¢ ) ,_,=0

and has the form
At
(e 7 [cosh% A2 —4c% 4+

A - i 2 _ 2
/iz_Mzsth\/J 4c ] 0<2c <A
A ar
£(¢) = e z[1+7] A=2c>0 (19)

sinh%\/4cz—iz] 20 >1>0

| &
le™? [cosh% 4?2 — 1%+

A
Vac2-;2
Proof:

The solution to the problem (17) and (18) is given by

Ar
e 2 L2 4,2 L2 4.2 1 L 24,2 L a2 4,2
£e) = 5= | (T T g g (T )
so that (19) emerges.
For large values of Z, the first expression furnishes £ (¢ )~1 and therefore the particle hardly leaves

the starting point. If %< ¢, the mean value exhibits an oscillating behavior; in particular , the oscillations

decrease as time goes on, and this means that the particle moves further and further reaching in the limit the
poles of the sphere.
5. Example:

A total of 50 male patients who suffered from congestive heart failure were recruited in a double blind,
placebo controlled trial and randomized to receive an intramuscular (gluteal) long acting androgen injection
(172 of testosterone enanthate 250777 /772 ) once every four weeks for 12 weeks or receive intramuscular
injections of saline (172 of 0.9% wr /wo/ MNacZ ) with the same protocol. Comparing baseline variables
and clinical parameters across the two groups who received testosterone or placebo did not show any significant
difference, except for 6442 that was higher in the testosterone group. During the 12 week study period, no
significant differences were revealed in the trend of the changes in hemodynamic parameters including systolic
and diastolic blood pressures as well as heart rate between the two groups. Also, the changes in body weight
were comparable between the groups, while, unlike the group received placebo, those who received testosterone
had a significant increasing trend in 64440 parameter within the study period (6 4442 at baseline was 407.44 +
100.2372 and after 12 weeks of follow up reached 491.65 + 112.8877 following testosterone therapy, 2 =
0.019). According to post hoc analysis, the mean 6 walk distance parameter was improved at three time points
of 4 weeks, 8 weeks, and 12 weeks after intervention compared with baseline; however no differences were
found in this parameter at three post intervention time points. The discrepancy in the trends of changes in
6/mD between study groups remained significant after adjusting baseline variables (vz@:  square =
243.262, F — iudex = 4.402and 2 = 0.045) [8-10] & [12-13].

- 500
(=}

K

6-minute walk

At baseline 1 weeks later 8 weeks later 12 weeks later

Study time points

§- Testosterone group

Placebo group

Figure 1: Trend of the changes in 6 minute walk distance parameter in intervention and placebo groups
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Blue Line: Testosterone Group
Red Line: Placebo Group
Figure 2: Trend of the changes in 6 minute walk distance parameter in intervention and placebo groups using
Uniform Distribution
6. Conclusion:

The changes in body weight, hemodynamic parameters, and left ventricular dimensional
echocardiographic indices were all comparable between the two groups. Regarding changes in diastolic
functional state and using Tei index, this parameter was significantly improved. Unlike the group received
placebo, those who received testosterone had a significant increasing trend in 6 walk mean distance (642)
parameter within the study period (# = 0.019). The discrepancy in the trends of changes in 64442 between
study groups remained significant after adjusting baseline variables
(mean  square = 243.262, Finder = 4.402 and 2 = 0.045). Our study strengthens insights into the
beneficial role of testosterone in improvement of functional capacity and quality of life in heart failure patients.
This results while using motion on Poincare half plane also gives the same result by using uniform distribution.
The medical reports {Figure (1)} are beautifully fitted with the mathematical model {Figure (2)}; (¢ .¢) the
results coincide with the mathematical and medical report.
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