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Abstract: 
Heart failure is a serious cardiovascular condition leading to life threatening events, poor prognosis, 

and degradation of quality of life. According to the present evidences suggesting association between low 

testosterone level and prediction of reduced exercise capacity as well as poor clinical outcome in patients with 

heart failure, we sought to determine if testosterone therapy improves clinical and cardiovascular conditions as 

well as quality of life status in patients with stable chronic heart failure. In the random motion on Poincare half 

plane, the hyperbolic distance is analyzed and also in the case where returns to the starting point is admitted. 

The mean hyperbolic distance in all versions of the motion envisaged and it is used to find the role of 

Testosterone in improvement of functional capacity and quality of life in heart failure patients. 

Key Words: Testosterone Therapy (TT), Congestive Heart Failure (CHF), Poincare Half Plane (PHP), Uniform 

Distribution. 

1. Introduction: 

 A noticeable evolution of therapeutic concepts has taken place with a variety of cardiac and hormonal 

drugs with the aim of improving patient’s survival, preventing sudden death, and improving quality of life [8] & 

[9]. In a significant proportion of heart failure patients, testosterone deficiency as an anabolic hormonal defect 

has been proven and identified even in both genders [10]. This metabolic and endocrinological abnormality is 

frequently associated with impaired exercise tolerance and reduced cardiac function [4]. For this reason, 

combination therapy with booster cardiovascular drugs and testosterone replacement therapy might be very 

beneficial in heart failure patients. The physiological pathways involved in these therapeutic processes have 

been recently examined. First, elevated level of testosterone following replacement therapy is major indicator 

for increase of peak 𝑉𝑂2 in affected men with heart failure explaining improvement of exercise tolerance in 

these patients [11]. Furthermore, testosterone replacement therapy can reduce circulating levels of inflammatory 

mediators including tumor necrosis factor 𝛼 (𝑇𝑁𝐹 − 𝛼) and interleukin (𝐼𝐿) − 1𝛽, as well as total cholesterol 

in patients with established simultaneous coronary artery disease and testosterone deficiency.  

 According to the present evidences suggesting association between low testosterone level and 

prediction of reduced exercise capacity as well as poor clinical outcome in patients with heart failure, we sought 

to determine if testosterone therapy improves clinical and cardiovascular conditions as well as quality of life 

status in patients with stable chronic heart failure. A random motion on Poincare half plane is studied. The mean 

hyperbolic distance in all versions especially the motion at finite velocity on the surface of a three dimensional 

sphere is investigated. In this case we use  
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to find the testosterone therapy (TT) on functional capacity, cardiovascular parameters (CVP), and quality of life 

in patients with congestive heart failure (CHF). 

2. Notations: 

 𝑇𝑁𝐹 − 𝛼              -          Tumor Necrosis Factor 𝛼  

 𝐼𝐿                          -          Interleukin      

                             𝑇𝑇                         -          Testosterone Therapy 

                                𝐶𝑉𝑃                      -           Cardiovascular Parameters     

                               𝐶𝐻𝐹                      -           Congestive Heart Failure 

                                6𝑀𝑊𝐷                 -            6 Minute Walk Distance 

3. Motions with Jumps Backwards to the Starting Point: 

 Motion on hyperbolic spaces have been studied since the end of the Fifties and most of papers devoted 

to them deal with the so called hyperbolic Brownian motion [1] [6] & [7]. More recently also works concerning 

two dimensional random motions at finite velocity on planar hyperbolic spaces have been introduced and 
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analyzed. While in the corresponds of motion are supposed to be independent, we present here a planar random 

motion with interacting components. Its counterpart on the unit sphere is also examined and discussed. 

 The space on which our motion develops is the Poincare upper half plane 𝐻2
+ =   𝑥, 𝑦 ∶ 𝑦 > 0  which 

is certainly the most popular model of the Lobachevsky hyperbolic space. In the space 𝐻2
+ the distance between 

points is measured by means of the metric 

                                                                  𝑑𝑠2 =
𝑑𝑥 2+𝑑𝑦 2

𝑦2                                                         (1) 

 The propagation of light in a planar non homogeneous medium, according to the Fermat principle, 

must obey the law 

                                                                   
sin 𝛼(𝑦)

𝑐(𝑥,𝑦)
= cos 𝑡  

Where 𝛼(𝑦) is the angle formed by the tangent to the curve of propagation with the vertical at the point with 

ordinate 𝑦. In the case where the velocity 𝑐 𝑥, 𝑦 = 𝑦 is independent from the direction, the light propagates on 

half circles as in 𝐻2
+.  

 It is shown that the light propagates in a non homogeneous half plane 𝐻2
+ with refracting index 

𝑛(𝑥, 𝑦) = 1 𝑦  with rays having the structure of half circles. Scattered obstacles in the non homogeneous 

medium cause random deviations in the propagation of light and this lead to the random model analyzed below. 

 The position of points in 𝐻2
+ can be given either in terms of Cartesian coordinates (𝑥, 𝑦) or by means of 

the hyperbolic coordinates  𝜂, 𝛼 . In particular, 𝜂 represents the hyperbolic distance of a point of 𝐻2
+ from the 

origin 𝑂 which has Cartesian coordinates (0, 1). We recall than 𝜂 is evaluated by means of (1) on the arc of a 

circumference with center located on the 𝑥 axis and joining (𝑥, 𝑦) with the origin 𝑂. The upper half 

circumference centered on the 𝑥 axis represents the geodesic lines of the space 𝐻2
+ and play the same role of the 

straight lines in the Euclidean plane [2] & [3].   

 The angle 𝛼 represents the slope of the tangent in 𝑂 to the half circumference passing through (𝑥, 𝑦). 

The formulas which relate the polar hyperbolic coordinates  𝜂, 𝛼  to the Cartesian coordinates (𝑥, 𝑦) are     

                                                          
𝑥 =

sinh 𝜂 cos 𝛼

cosh 𝜂−sinh 𝜂 sin 𝛼
𝜂 > 0

𝑦 =
1

cosh 𝜂−sinh 𝜂 sin 𝛼
−

𝜋

2
< 𝛼 <

𝜋

2

                             (2) 

for each value of  𝛼 the relevant geodesic curve is represented by the half circumference with equation  

                                                             𝑥 − tan𝛼 2 + 𝑦2 =
1

𝑐𝑜𝑠2𝛼
                                          (3) 

for 𝛼 =
𝜋

2
  we get from (3) the positive 𝑦 axis which also is a geodesic curve of 𝐻2

+. From (2) it is easy to obtain 

the following expression of the hyperbolic distance 𝜂 of (𝑥, 𝑦) from the origin 𝑂: 

                                                               cosh 𝜂 =
𝑥2+𝑦2+1

2𝑦
                                                      (4) 

from (4) it can be seen that all the points having hyperbolic distance 𝜂 from the origin 𝑂 from a Euclidean 

circumference with center at (0, 𝑐𝑜𝑠ℎ 𝜂) and radius sinh 𝜂. 

 The expression of the hyperbolic distance between two arbitrary points (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2) is instead 

given by 

                                                             cosh 𝜂 =
 𝑥1−𝑥2 

2+𝑦1
2+𝑦2

2

2𝑦1𝑦2
                                             (5) 

 In fact, by considering the hyperbolic triangle with vertices at  0, 1 , (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2), by means of 

the Carnot hyperbolic formula it is simple to show that the distance 𝜂 between (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2) is given by 

                    cosh 𝜂 = cosh 𝜂1 cosh 𝜂2 − sinh 𝜂1 sinh 𝜂2 cos 𝛼1 − 𝛼2                                 (6) 

where (𝜂1, 𝛼1) and (𝜂2, 𝛼2)  are the hyperbolic coordinates of (𝑥1 , 𝑦1) and (𝑥2, 𝑦2) respectively. From (3) we 

obtain that  

                                                tan 𝛼𝑖 =
𝑥𝑖

2+𝑦𝑖
2−1

2𝑥1
  for 𝑖 = 1, 2, …                                             (7) 

and in view of (4) and (7), after some calculations, formula (5) appears. Instead of the elementary arguments of 

the proof above we can also invoke the group theory which reduces (𝑥1 , 𝑦1) to (0, 1). 

 If 𝛼1 − 𝛼2 =
𝜋

2
 the hyperbolic Carnot formula (6) reduces to the hyperbolic Pythagorean theorem 

                                                   cosh 𝜂 = cosh 𝜂1 cosh 𝜂2  

which plays an important role in the present paper. 

 The motion considered here is the non Euclidean counterpart of the planar motion with orthogonal 

deviations studied. The main object of the investigation is the hyperbolic distance of the moving point form the 

origin. We are able to give explicit expressions for its mean value, also under the condition that the number of 

changes of direction is known. In the case of motion in 𝐻2
+ with independent components an explicit expression 

for the distribution of the hyperbolic distance 𝜂 has been obtained. Here, however, the components of motion 

are dependent and this excludes any possibility of finding the distribution of the hyperbolic distance 𝜂(𝑡). 
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 We obtain the following explicit formula for the mean value of the hyperbolic distance which 

reads 

            𝐸 cosh 𝜂(𝑡) = 𝑒
−𝜆𝑡

2  cosh
𝑡

2
 𝜆2 + 4𝑐2 +

𝜆

 𝜆2+4𝑐2
sinh

𝑡

2
 𝜆2 + 4𝑐2 = 𝐸𝑒𝑇(𝑡)      

where 𝑇(𝑡) is a telegraph process with parameters 
𝜆

2
 and 𝑐.  

 The telegraph process represents the random of a particle moving with constant velocity and changing 

direction at Poisson paced times. 

 This section is devoted to motions on the Poincare half plane where the return to the starting point is 

admitted and occurs at the instants of changes of direction. The mean distance from the origin of these jumping 

back motions is obtained explicitly by exploiting their relationship with the motion without jumps. In the case 

where the return to the starting point occurs at the Poisson event 𝑇1, the mean value of the hyperbolic distance 

𝜂1(𝑡) reads 

                                       𝐸 cosh 𝜂1(𝑡)│𝑁(𝑡) ≥ 1 =
𝜆

 𝜆2+4𝑐2

sinh
𝑡

2
 𝜆2+4𝑐2

sinh
𝑡

2

  

 The next section considers the motion at finite velocity, with orthogonal deviations at Poisson times, on 

the unit radius sphere. The main results concern the mean value 𝐸 cos 𝑑(𝑃0𝑃1) , where 𝑑(𝑃0𝑃1) is the distance 

of the current point 𝑃1 from the starting position 𝑃0. We take profit of the analogy of the spherical motion with 

its counterpart on the Poincare half plane to discuss the different situations due to the finiteness of the space 

where the random motion develops. 

 We here examine the planar motion dealt with so far assuming now that, at the instants of changes of 

direction, the particle can return to the starting point and commence its motion from scratch. 

 The new motion and the original one are governed by the same Poisson process so that changes of 

direction occur simultaneously in the original as well as in the new motion starting a fresh from the origin. This 

implies that the arcs of the original sample path and those of the new trajectories have the same hyperbolic 

length. However, the angles formed by successive segments differ in order to make the hyperbolic Pythagorean 

Theorem applicable to the trajectories of the new motion.   

 In order to make our description clearer, we consider the case where, in the interval (0, 𝑡), 𝑁(𝑡) = 𝑛 

Poisson events (𝑛 ≥ 1) occur and we assume that the jump to the origin happens at the first change of direction 

i.e., at the instant 𝑡1. The instants of changes of direction for the new motion are 

                                                                 𝑡𝑘
′ = 𝑡𝑘+1 − 𝑡1  

where 𝑘 = 0, 1, … , 𝑛 with 𝑡0
′ = 0 and 𝑡𝑛

′ = 𝑡 − 𝑡1and the hyperbolic lengths of the corresponding arcs are 

                                                            𝑐 𝑡𝑘
′ − 𝑡𝑘−1

′  = 𝑐 𝑡𝑘+1 − 𝑡𝑘   

Therefore, at the instant 𝑡, the hyperbolic distance from the origin of the particle performing the motion which 

has jumped back to 𝑂 at time 𝑡1is 

 cosh 𝑐 𝑡𝑘
′ − 𝑡𝑘−1

′  = cosh 𝑐 𝑡𝑘+1 − 𝑡𝑘 = cosh 𝑐 𝑡𝑘 − 𝑡𝑘−1
′  𝑛+1

𝑘=2
𝑛
𝑘=1

𝑛
𝑘=1              (8) 

where 0 = 𝑡0
′ < 𝑡1

′ < ⋯ < 𝑡𝑛
′ = 𝑡 − 𝑡1 and 𝑡𝑘+1 = 𝑡𝑘

′ + 𝑡1. Formula (8) shows the first step has been deleted. 

However, the distance between the position 𝑃𝑡  and the origin 𝑂 of the moving particle which jumped back to 𝑂 

after having reached the position 𝑃1, is different from the distance of 𝑃𝑡  from 𝑃1 since the angle between 

successive steps must be readjusted in order to apply the hyperbolic Pythagorean Theorem. 

 If we denote by 𝑇1  the random instant of the return to the starting point (occurring at the first Poisson 

event), we have that 

  𝐸 cosh 𝜂1 𝑡 𝐼 𝑁 𝑡 ≥1 │𝑁 𝑡 = 𝑛 = 𝐸 cosh 𝜂 𝑡 − 𝑇1 𝐼 𝑇1≤𝑡 │𝑁 𝑡 = 𝑛   

                                                         =  𝐸 cosh 𝜂 𝑡 − 𝑇1 𝐼 𝑇1∈𝑑𝑡1 
│𝑁 𝑡 = 𝑛 𝑑𝑡1 

𝑡

0
   

                     =  𝐸 cosh 𝜂 𝑡 − 𝑇1 │𝑇1 = 𝑡1, 𝑁 𝑡 = 𝑛 𝑃𝑟 𝑇1 ∈ 𝑑𝑡1│ 𝑁 𝑡 = 𝑛 𝑑𝑡1 
𝑡

0
       (9)  

By observing that 

                    𝐸 cosh 𝜂 𝑡 − 𝑇1 │𝑇1 = 𝑡1, 𝑁 𝑡 = 𝑛 = 𝐸 cosh 𝜂 𝑡 − 𝑡1 │ 𝑁 𝑡 = 𝑛 − 1   

                                                                                   =
 𝑛−1 !

 𝑡−𝑡1 
𝑛−1 𝐼𝑛−1 𝑡 − 𝑡1   

and that 

                                        𝑃𝑟 𝑇1 ∈ 𝑑𝑡1│ 𝑁 𝑡 = 𝑛 =
𝑛!

𝑡𝑛

 𝑡−𝑡1 
𝑛−1

 𝑛−1 !
𝑑𝑡1  

with 0 < 𝑡1 < 𝑡,  formula (9) becomes 

                               𝐸 cosh 𝜂1 𝑡 𝐼 𝑁 𝑡 ≥1 │𝑁 𝑡 = 𝑛 =
𝑛!

𝑡𝑛
 𝐼𝑛−1 𝑡 − 𝑡1 𝑑𝑡1  
𝑡

0
                  (10) 

From (10) we have that the mean hyperbolic distance for the particle which returns to 𝑂 at time 𝑇1, has the form: 

             𝐸 cosh 𝜂1 𝑡 │𝑁 𝑡 ≥ 1 =
𝑒−𝜆𝑡

𝑃𝑟 𝑁 𝑡 ≥1 
 𝜆𝑛∞
𝑛=1  𝐼𝑛−1 𝑡 − 𝑡1 𝑑𝑡1 

𝑡

0
  

                                                       =
𝜆𝑒−𝜆𝑡

𝑃𝑟 𝑁 𝑡 ≥1 
 𝑒𝜆 𝑡−𝑡1 𝐸 𝑡 − 𝑡1 𝑑𝑡1 
𝑡

0
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 We give here, a general expression for the mean value of the hyperbolic distance of a particle which 

returns to the origin for the last time at the k
th

 Poisson event 𝑇𝑘 . We shall denote the distance by the following 

equivalent notation 𝜂 𝑡 − 𝑇𝑘 = 𝜂𝑘 𝑡   where the first expression underlines that the particle starts from scratch 

at time 𝑇𝑘  and then moves away for the remaining interval of length 𝑡 − 𝑇𝑘 . In the general case we have the 

result stated in the next theorem. 

Theorem: 3.1 

  If 𝑁 𝑡 ≥ 𝑘, then the mean value of the hyperbolic distance 𝜂𝑘  is equal to                 

                𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 =
𝜆𝑘𝑒−𝜆𝑡

𝑃𝑟 𝑁 𝑡 ≥𝑘 
 𝑒𝜆 𝑡−𝑡𝑘 𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘  
𝑡

0
  

                                                           =
𝜆𝑘𝑒−𝜆𝑡

𝑃𝑟 𝑁 𝑡 ≥𝑘  𝑘−1 !
 𝑒𝜆 𝑡−𝑡𝑘  𝑡𝑘

𝑘−1𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘  
𝑡

0
         (11)   

where 𝐸 𝑡 = 𝑒
−𝜆𝑡

2  cosh
𝑡 𝜆2 +4𝑐2

2
+

𝜆

 𝜆2+4𝑐2
sinh

𝑡 𝜆2+4𝑐2

2
   

Proof: 

 We start by observing that 

  𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 =  𝐸 cosh 𝜂𝑘 𝑡 𝐼 𝑁 𝑡 =𝑛 │𝑁 𝑡 ≥ 𝑘 ∞
𝑛=𝑘   

                                             =  𝐸 cosh 𝜂𝑘 𝑡 𝐼 𝑁 𝑡 ≥𝑘 │𝑁 𝑡 = 𝑛 
𝑃𝑟 𝑁 𝑡 =𝑛 

𝑃𝑟 𝑁 𝑡 ≥𝑘 
∞
𝑛=𝑘   

                       =  𝐸 cosh 𝜂𝑘 𝑡 𝐼 𝑁 𝑡 ≥𝑘 │𝑁 𝑡 = 𝑛 𝑃𝑟 𝑁 𝑡 = 𝑛│𝑁 𝑡 ≥ 𝑘 ∞
𝑛=𝑘            (12) 

Since 𝑇𝑘 = 𝑖𝑛𝑓 𝑡: 𝑁 𝑡 = 𝑘 , the conditional mean value inside the sum can be developed as follows                                                                                                                                                                                                

𝐸 cosh 𝜂𝑘 𝑡 𝐼 𝑁 𝑡 ≥𝑘 │𝑁 𝑡 = 𝑛 = 𝐸 cosh 𝜂 𝑡 − 𝑇𝑘 𝐼 𝑇𝑘≤𝑡 │𝑁 𝑡 = 𝑛  

                                 =  𝐸 cosh 𝜂 𝑡 − 𝑇𝑘 𝐼 𝑇𝑘∈𝑑𝑡𝑘 │𝑁 𝑡 = 𝑛 𝑑𝑡𝑘
𝑡

0
  

                              =  𝐸 cosh 𝜂 𝑡 − 𝑇𝑘 │𝑇𝑘 = 𝑡𝑘 , 𝑁 𝑡 = 𝑛 𝑃𝑟 𝑇𝑘 ∈ 𝑑𝑡𝑘│𝑁 𝑡 = 𝑛 
𝑡

0
𝑑𝑡𝑘    

 Now we consider 𝐸𝑛 𝑡 =
𝑛!

𝑡𝑛
𝐼𝑛 𝑡                                                                 (13) 

Using the above condition (13), we have that 

           𝐸 cosh 𝜂 𝑡 − 𝑇𝑘 │𝑇𝑘 = 𝑡𝑘 , 𝑁 𝑡 = 𝑛 = 𝐸 cosh 𝜂 𝑡 − 𝑡𝑘 │𝑁 𝑡 − 𝑡𝑘 = 𝑛 − 𝑘   

                                                                           =
 𝑛−𝑘 !

 𝑡−𝑡𝑘 
𝑛−𝑘 𝐼𝑛−𝑘 𝑡 − 𝑡𝑘  

and on the base of well known properties of the Poisson process we have that 

                                        𝑃𝑟 𝑇𝑘 ∈ 𝑑𝑡𝑘│𝑁 𝑡 = 𝑛 =
𝑛!

𝑡𝑛

 𝑡−𝑡𝑘 
𝑛−𝑘

 𝑛−𝑘 !

𝑡𝑘
𝑘−1

 𝑘−1 !
𝑑𝑡𝑘   

where 0 < 𝑡𝑘 < 𝑡. In conclusion we have that  

                            𝐸 cosh 𝜂𝑘 𝑡 𝐼 𝑁 𝑡 ≥𝑘 │𝑁 𝑡 = 𝑛 =
𝑛!

𝑡𝑛

1

 𝑘−1 !
 𝑡𝑘

𝑘−1𝐼𝑛−𝑘 𝑡 − 𝑡𝑘 𝑑𝑡𝑘  
𝑡

0
   

and, from this and (12), it follows that 

                      𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 =  
𝑛!

𝑡𝑛

1

 𝑘−1 !
 𝑡𝑘

𝑘−1𝐼𝑛−𝑘 𝑡 − 𝑡𝑘 𝑑𝑡𝑘
𝑒−𝜆𝑡  𝜆𝑡  𝑛

𝑛!𝑃𝑟 𝑁(𝑡)≥𝑘 
 

𝑡

0
∞
𝑛=𝑘   

                                                                 =
𝑒−𝜆𝑡 𝜆𝑘

𝑃𝑟 𝑁(𝑡)≥𝑘  𝑛−1 !
 𝑒𝜆 𝑡−𝑡𝑘  𝑡𝑘

𝑘−1𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘
𝑡

0
  

Finally, in view of Cauchy formula of multiple integrals, we obtain that 
𝑒−𝜆𝑡 𝜆𝑘

𝑃𝑟 𝑁(𝑡)≥𝑘  𝑛−1 !
 𝑒𝜆 𝑡−𝑡𝑘 𝑡𝑘

𝑘−1𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘
𝑡

0
 =

𝑒−𝜆𝑡 𝜆𝑘

𝑃𝑟 𝑁(𝑡)≥𝑘 
 𝑑𝑡1 … 𝑒𝜆 𝑡−𝑡𝑘 𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘

𝑡

𝑡𝑘−1

𝑡

0
  

Theorem: 3.2 

 The mean of the hyperbolic distance of the moving particle returning to the origin at the k
th

 change of 

direction is 

  𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 =
𝜆𝑘𝑒−𝜆𝑡

 𝜆2+4𝑐2𝑃𝑟  𝑁 𝑡 ≥𝑘 
 
𝑒𝐴𝑡

𝐴𝑘−1 −
𝑒𝐵𝑡

𝐵𝑘−1 +   
1

𝐵𝑖
−

1

𝐴𝑖
 

𝑡𝑘−𝑖−1

 𝑘−𝑖−1 !

𝑘−1
𝑖=1      (14) 

where 𝐴 =
1

2
 𝜆 +  𝜆2 + 4𝑐2  and 𝐵 =

1

2
 𝜆 −  𝜆2 + 4𝑐2   

for 𝑘 = 1, the sum in (14) is intended to be zero. 

Proof: 

 We can prove (14) by applying both formulas in (11). We start our proof by employing the first one: 

    𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 =
𝜆𝑘𝑒−𝜆𝑡

𝑃𝑟   𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 … 𝑒𝜆 𝑡−𝑡𝑘 𝐸 𝑡 − 𝑡𝑘 𝑑𝑡𝑘

𝑡

𝑡𝑘−1

𝑡

0
                   (15) 

Now consider 𝐸 𝑡 =
𝑒−𝜆𝑡 2 

2
 
𝜆+ 𝜆2+4𝑐2

 𝜆2+4𝑐2
𝑒 𝑡 2   𝜆2+4𝑐2

+
 𝜆2+4𝑐2−𝜆

 𝜆2+4𝑐2
𝑒− 𝑡 2   𝜆2+4𝑐2

              (16) 

Therefore in view of (16), formula (15) becomes 

 𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 = 
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𝜆𝑘𝑒−𝜆𝑡

𝑃𝑟  𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 … 𝑒𝜆 𝑡−𝑡𝑘  

𝑒𝜆(𝑡−𝑡𝑘) 2 

2
 
𝜆+ 𝜆2+4𝑐2

 𝜆2+4𝑐2
𝑒 𝑡−𝑡𝑘 2   𝜆2+4𝑐2

+
𝑡

𝑡𝑘−1

𝑡

0

 𝜆2+4𝑐2−𝜆

 𝜆2+4𝑐2
𝑒− 𝑡−𝑡𝑘 2   𝜆2+4𝑐2

 𝐸 𝑡 − 𝑡𝑘  𝑑𝑡𝑘   

By introducing 𝐴 and 𝐵 as in (14), we can easily determine the 𝑘 fold integral 

       𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 = 
𝜆𝑘𝑒−𝜆𝑡

 𝜆2+4𝑐2𝑃𝑟  𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 …  𝐴𝑒𝐴(𝑡−𝑡𝑘) − 𝐵𝑒𝐵(𝑡−𝑡𝑘) 𝑑𝑡𝑘

𝑡

𝑡𝑘−1

𝑡

0
  

                                      =
𝜆𝑘𝑒−𝜆𝑡

 𝜆2 +4𝑐2𝑃𝑟  𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 …  𝑒𝐴(𝑡−𝑡𝑘−1) − 𝑒𝐵(𝑡−𝑡𝑘−1) 𝑑𝑡𝑘−1

𝑡

𝑡𝑘−2

𝑡

0
 

                                =
𝜆𝑘𝑒−𝜆𝑡

 𝜆2 +4𝑐2𝑃𝑟   𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 …  

𝑒𝐴(𝑡−𝑡𝑘−2)

𝐴
−

𝑒𝐵(𝑡−𝑡𝑘−2)

𝐵
+

1

𝐵
−

1

𝐴
 𝑑𝑡𝑘−2

𝑡

𝑡𝑘−3

𝑡

0
   

At the 𝑗𝑡ℎ stage the integral becomes 

       𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 = 

        
𝜆𝑘𝑒−𝜆𝑡

 𝜆2+4𝑐2𝑃𝑟   𝑁 𝑡 ≥𝑘 
 𝑑𝑡1 …  

𝑒
𝐴(𝑡−𝑡𝑘−𝑗 )

𝐴𝑗−1 −
𝑒
𝐵(𝑡−𝑡𝑘−𝑗 )

𝐵𝑗−1 +   
1

𝐵𝑖
−

1

𝐴𝑖
 
 𝑡−𝑡𝑘−𝑗  

𝑗−𝑖−1

 𝑗−𝑖−1 !

𝑗−1
𝑖=1  

𝑡

𝑡𝑘−𝑗−1

𝑡

0
  

At the (𝑘 − 1)𝑡ℎstage the integral becomes 

                  𝐸 cosh 𝜂𝑘 𝑡 │𝑁 𝑡 ≥ 𝑘 = 

                             
𝜆𝑘𝑒−𝜆𝑡

 𝜆2 +4𝑐2𝑃𝑟  𝑁 𝑡 ≥𝑘 
 𝑑𝑡1  

𝑒𝐴(𝑡−𝑡1)

𝐴𝑘−2 −
𝑒𝐵(𝑡−𝑡1)

𝐵𝑘−2 +   
1

𝐵𝑖
−

1

𝐴𝑖
 
 𝑡−𝑡1 

𝑘−2

 𝑘−𝑖−2 !

𝑘−2
𝑖=1  

𝑡

0
    

At the 𝑘𝑡ℎ integration we obtain formula (14). 

 By means of the second formula in (11) and by repeated integrations by parts we can obtain 

again result (14). 

4. Motion at Finite Velocity on the Surface of a Three Dimensional Sphere: 

 Let 𝑃0 be a point on the equator of a three dimensional sphere. Let us assume that the particle starts 

moves from 𝑃0 along the equator in one of the two possible directions (clockwise or counter clockwise) with 

velocity 𝑐.  

 At the first Poisson event (occurring at time 𝑇 1) it starts moving on the meridian joining the north pole 

𝑃 𝑁   with the position reached at time 𝑇 1(denoted by 𝑃 1) along one of the two possible directions. 

 At the second Poisson event the particle is located at 𝑃 2 and its distance from the starting point 𝑃 0 is 

the length of the hypotenuse of a right spherical triangle with cathetus 𝑃 0𝑃 1 and 𝑃 1𝑃 2; the hypotenuse belongs 

to the equatorial circumference through 𝑃 0 and 𝑃 2. 

 Now the particle continues its motion (in one of the two possible directions0 along the equatorial 

circumference orthogonal to the hypotenuse through 𝑃 0 and 𝑃 2 until the third Poisson event occurs. 

 In general, the distance 𝑑  𝑃 0𝑃 1  of the point 𝑃 1 from the origin 𝑃 0 is the length of the shortest arc of 

the equatorial circumference through 𝑃 0 and 𝑃 1and therefore it takes values in the interval [0, 𝜋 ]. Counter 

clockwise motions cover the arcs in  – 𝜋 , 0  so that the distance is also defined in  0, 𝜋   or in  −𝜋 2 , 𝜋 2    
with s shift that avoids negative values for the cosine. 

 By means of the spherical Pythagorean relationship we have that the Euclidean distance 𝑑  𝑃 0𝑃 2  
satisfies 

                                             cos𝑑  𝑃 0𝑃 2 = cos𝑑  𝑃 0𝑃 1 cos𝑑  𝑃 1𝑃 2       
and, after three displacements, 

                                             cos𝑑  𝑃 0𝑃 3 = cos𝑑  𝑃 0𝑃 2 cos𝑑  𝑃 2𝑃 3       
                                                                 = cos𝑑  𝑃 0𝑃 1 cos𝑑  𝑃 1𝑃 2 cos𝑑  𝑃 2𝑃 3       
After 𝑛  displacement the position 𝑃 𝑡  on the sphere at time 𝑡  is given by 

                                             cos𝑑  𝑃 0𝑃 𝑡  =  cos𝑑  𝑃 𝑘 𝑃 𝑘 −1 cos𝑑  𝑃 𝑛𝑃 𝑡   
𝑛
𝑘 =1    

Since 𝑑  𝑃 𝑘 𝑃 𝑘 −1  is represented by the amplitude of the arc run in the interval  𝑡 𝑘 , 𝑡 𝑘 −1 , it results 

                                                      𝑑  𝑃 𝑘 𝑃 𝑘 −1 = 𝑐  𝑡 𝑘 , 𝑡 𝑘 −1   

The mean value 𝐸  cos𝑑  𝑃 0𝑃 𝑡  │𝑁 𝑡  = 𝑛   is given by 

                                                   𝐸 𝑛  𝑡  = 𝐸  cos𝑑  𝑃 0𝑃 𝑡  │𝑁 𝑡  = 𝑛      

                                                              =
𝑛 !

𝑡 𝑛
 𝑑𝑡 1

𝑡

0
 𝑑𝑡 2

𝑡

𝑡 1
… 𝑑𝑡 𝑛

𝑡

𝑡 𝑛 −1
 cos 𝑐 (𝑛 +1
𝑘 =1 𝑡 𝑘 , 𝑡 𝑘 −1)  

                                                              =
𝑛 !

𝑡 𝑛
𝐻𝑛  𝑡    

Where  𝑡 0 = 0, 𝑡 𝑛 +1 = 𝑡  and 

                            𝐻𝑛  𝑡  =  𝑑𝑡 1

𝑡

0
 𝑑𝑡 2

𝑡

𝑡 1
… 𝑑𝑡 𝑛

𝑡

𝑡 𝑛−1
 cos 𝑐 (𝑛 +1
𝑘 =1 𝑡 𝑘 , 𝑡 𝑘 −1)   

The mean value 𝐸  cos𝑑  𝑃 0𝑃 𝑡     is given by 

                                                      𝐸  𝑡  = 𝐸  cos𝑑  𝑃 0𝑃 𝑡      

                                                               =  𝐸 cos𝑑  𝑃 0𝑃 𝑡  │𝑁 𝑡  = 𝑛  𝑃𝑟∞
𝑛 =0  𝑁 𝑡  = 𝑛    

                                                               = 𝑒 −𝜆𝑡  𝜆 𝑛𝐻𝑛  𝑡  
∞
𝑛 =0   
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By steps similar to those of the hyperbolic case we have that 𝐻𝑛  𝑡  , 𝑡 ≥ 0, satisfies the difference differential 

equation 

                                                       
𝑑 2

𝑑𝑡 2 𝐻𝑛 =
𝑑

𝑑𝑡
𝐻𝑛 −1 − 𝑐 2𝐻𝑛   

where 𝐻0 𝑡  = cos 𝑐𝑡 and therefore we can prove the following: 

Theorem: 4.1 

 The mean value 𝐸 (𝑡 ) = 𝐸  cos𝑑  𝑃 0𝑃 𝑡    satisfies 

                                                              
𝑑 2

𝑑𝑡 2 𝐸 = −𝜆
𝑑

𝑑𝑡
𝐸 − 𝑐 2𝐸                                              (17) 

with initial conditions 

                                                               
𝐸  0 = 1

𝑑

𝑑𝑡
𝐸  𝑡  │

𝑡 =0
= 0

                                                      (18) 

and has the form 

      𝐸  𝑡  =

 
 
 

 
 𝑒

−
𝜆𝑡
2  cosh

𝑡

2
 𝜆 2 − 4𝑐 2 +

𝜆

 𝜆 2−4𝑐 2
sinh

𝑡

2
 𝜆 2 − 4𝑐 2 0 < 2𝑐 < 𝜆

𝑒 −
𝜆𝑡
2  1 +

𝜆𝑡

2
 𝜆 = 2𝑐 > 0

𝑒 −
𝜆𝑡
2  cosh

𝑡

2
 4𝑐 2 − 𝜆 2 +

𝜆

 4𝑐 2−𝜆 2
sinh

𝑡

2
 4𝑐 2 − 𝜆 2 2𝑐 > 𝜆 > 0

                (19) 

Proof: 

 The solution to the problem (17) and (18) is given by 

      𝐸  𝑡  =
𝑒
−
𝜆𝑡
2

2
  𝑒

𝑡
2
 𝜆 2−4𝑐 2

+ 𝑒 −
𝑡
2
 𝜆 2−4𝑐 2

 +
𝜆

 𝜆 2−4𝑐 2
 𝑒

𝑡
2
 𝜆 2−4𝑐 2

− 𝑒 −
𝑡
2
 𝜆 2−4𝑐 2

               (20) 

so that (19) emerges. 

 For large values of 𝜆 , the first expression furnishes 𝐸 (𝑡 )~1 and therefore the particle hardly leaves 

the starting point. If 
𝜆

2
< 𝑐 , the mean value exhibits an oscillating behavior; in particular , the oscillations 

decrease as time goes on, and this means that the particle moves further and further reaching in the limit the 

poles of the sphere. 

5. Example: 

 A total of 50 male patients who suffered from congestive heart failure were recruited in a double blind, 

placebo controlled trial and randomized to receive an intramuscular (gluteal) long acting androgen injection 

(1𝑚𝑙  of testosterone enanthate 250𝑚𝑔 /𝑚𝑙 ) once every four weeks for 12 weeks or receive intramuscular 

injections of saline (1𝑚𝑙  of 0.9% 𝑤𝑡 /𝑣𝑜𝑙  𝑁𝑎𝐶𝑙 ) with the same protocol. Comparing baseline variables 

and clinical parameters across the two groups who received testosterone or placebo did not show any significant 

difference, except for 6𝑀𝑊𝐷  that was higher in the testosterone group. During the 12 week study period, no 

significant differences were revealed in the trend of the changes in hemodynamic parameters including systolic 

and diastolic blood pressures as well as heart rate between the two groups. Also, the changes in body weight 

were comparable between the groups, while, unlike the group received placebo, those who received testosterone 

had a significant increasing trend in 6𝑀𝑊𝐷  parameter within the study period (6𝑀𝑊𝐷  at baseline was 407.44 ±
100.23𝑚 and after 12 weeks of follow up reached 491.65 ± 112.88𝑚 following testosterone therapy, 𝑃 =
0.019). According to post hoc analysis, the mean 6 walk distance parameter was improved at three time points 

of 4 weeks, 8 weeks, and 12 weeks after intervention compared with baseline; however no differences were 

found in this parameter at three post intervention time points. The discrepancy in the trends of changes in 

6𝑀𝑊𝐷  between study groups remained significant after adjusting baseline variables (𝑚𝑒𝑎𝑛  𝑠𝑞𝑢𝑎𝑟𝑒 =
243.262, 𝐹 − 𝑖𝑛𝑑𝑒𝑥 = 4.402 and 𝑃 = 0.045) [8-10] & [12-13]. 

 
Figure 1: Trend of the changes in 6 minute walk distance parameter in intervention and placebo groups 
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Blue Line: Testosterone Group 

Red Line: Placebo Group 

Figure 2: Trend of the changes in 6 minute walk distance parameter in intervention and placebo groups using 

Uniform Distribution 

6. Conclusion: 

The changes in body weight, hemodynamic parameters, and left ventricular dimensional 

echocardiographic indices were all comparable between the two groups. Regarding changes in diastolic 

functional state and using Tei index, this parameter was significantly improved. Unlike the group received 

placebo, those who received testosterone had a significant increasing trend in 6 walk mean distance (6𝑀𝑊𝐷 ) 

parameter within the study period (𝑃 = 0.019). The discrepancy in the trends of changes in 6𝑀𝑊𝐷  between 

study groups remained significant after adjusting baseline variables 

(𝑚𝑒𝑎𝑛  𝑠𝑞𝑢𝑎𝑟𝑒 = 243.262, 𝐹  𝑖𝑛𝑑𝑒𝑥 = 4.402 and 𝑃 = 0.045). Our study strengthens insights into the 

beneficial role of testosterone in improvement of functional capacity and quality of life in heart failure patients. 

This results while using motion on Poincare half plane also gives the same result by using uniform distribution. 

The medical reports {Figure (1)} are beautifully fitted with the mathematical model {Figure (2)}; (𝑖 . 𝑒 ) the 

results coincide with the mathematical and medical report.    
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