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Abstract: 

A petal graph is a connected graph G with maximum degree three, minimum degree two, and such that 

the set of vertices of degree three induces a 2–regular graph and the whole set of vertices of degree in two 

induces an empty graph. We prove here that, with the single exception of the graph obtained from the Petersen 

graph by deleting one vertex, all petal graphs are Class 1. 
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Introduction: 

Graph theory is one of the branch of mathematics. A graph bears no relation to the graph that chat data 

such as the progress of the stock market or the growing population of the planet. Graph paper is not specifically 

used for drawing the graphs of graph theory. In graph theory a graph is a collection of dots with roots that may 

or may not be connected to each other by stem lines. It does not matter how big the dots are how long the lines 

are or whether the lines are straight curved or squiggly the “dots” do not even to be round. All the matter is 

which dots are connected by which lines. One of the first people to experiment with graph theory was a man by 

the name of Leonhard Euler (1707 - 1783). He attempted to solve the problem of crossing seven brides onto an 

island without using any of them more than once. There are several reasons of the acceleration for interest in 

graph theory. It has become fashionable to mention that there are applications of graph theory to some areas of 

physics, chemistry, communication science, computer technology, electrical and civil engineering, architecture, 

operational research, genetics, psychology, sociology, economics.   

Introduction: 

In this chapter, we introduce some basic important definitions of graph theory. 

Basic Definitions: 

Definition: A graph G consists of a pair (V(G) , E(G)) where V(G) is a non-empty finite set whose elements are 

called points or vertices and E(G) is a set of unordered pairs of distinct elements of V(G).  All These elements 

of E(G) are always called as lines or edges of the graph G. A graph with p points and q lines is called a (p, q) 

graph. 

Example: Let V = {a, b, c, d} and E = {{a,b}, {a,c}, {a,d}}  G = (V, E) is a (4,3) graph.  This graph can be 

represented by the diagram given in Fig 1. 

Definition: Let  𝑥 =  {𝑢1, 𝑣1}𝐸(𝐺), this fixed row x is called a join 𝑢 𝑎𝑛𝑑 𝑣.  We already mention x = uv and 

we say that the points u and v are adjacent. We also say that the point u and the line x are incident with each 

other.  If two distinct lines x and y are incident with a common point then they are called adjacent lines. 

Example: Let V={1,2,3,4} and E = {{1,2}, {1,3},{1,4},{2,3},{2,4},{3,4}}. This graph is represented by the 

diagram a, b, c, d, e, f represent the edges in E.  

Definition: A graph in which any two distinct points were adjacent is called a complete graph. A complete 

graph with p points is denoted by Kp. 

Definition: A graph G is called a bigraph or bipartite graph if V can be partitioned into two disjoint subsets V1 

and V2 such that every line of G joins a point of V1 to a point of V2. (V1, V2) is called a bipartition of G. If 

further G contains every line joining the points of V1 to the points of V2 then G is called a complete bipartite 

graph. If V1 contains m points and V2 contains n points the complete bigraph G is denoted by Km,n 

Example:  This is a complete bipartite graph denoted by K3,3 with the bipartition (V1 , V2) where V1 = {1,2,3} 

and V2 = {4,5,6}. 

Definition: The degree of a point v in a graph G is the number of lines incident with v and is denoted by deg v. 

A point v of degree 0 is called an isolated vertex and a point v of degree 1 is called an end point or a pendant 

vertex. For any other graph G we would define as (G) = min {deg v / vV(G)} and (G) = max {deg v / 

vV(G)}. 

Example: Consider the graph, in the graph G  

5 is the isolated vertex since deg 5 = 0 
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4 is the pendant vertex since deg 4 = 1 

deg 1 = 2,     deg 2 = 2  

(G) = 0,      (G) = deg 3 = 3. 

Colouring the Petals of a Graph: 

Introduction: In this chapter, we discuss colouring the petals of a graph. 

Colouring the Petals of a Graph: 

Definition: A petal graph is a connected graph G such that:Δ 𝐺 =  3,   𝛿 𝐺 = 2; 𝐺Δis 2-regular; every edge 

of G is incident with at least one vertex in 𝐺Δ. 
Note: The petal size of G, denoted 𝑝(𝐺), is the very minimal size of the petals of G. 

Conjecture: Let G be a connected graph such that Δ 𝐺Δ ≤ 2.Let 𝐺 ≠ 𝑃∗.Then G is Class 2 if and only if G is 

overfull.  

Result: Let G be a critical graph. Then every vertex of G is adjacent to at least two vertices of 𝐺Δ. 
Lemma: Let G be a connected Class 2 graph with Δ 𝐺 = 3and Δ 𝐺Δ ≤ 2 . ThenG is a petal graph. 

Proof: Property 1 and 2 of the definition of petal graph follow immediately from Result 

Property 3 follows from Result 3.2.2 and Result3.2.1. Notice that this lemma reduces Theorem3.2.1 to Theorem 

3.2.2. From now all G could denote a petal graph. The colour set will be the set  𝛼, 𝛽, 𝛾 and, if 𝒟 ⊂
 𝛼, 𝛽, 𝛾     , 𝒟      will denote The  set  𝛼, 𝛽, 𝛾 𝒟  .  This proof is complete. 

Definition: Let G is Class 1 if 𝜒1 𝐺 = Δ 𝐺  and Class 2 if 𝜒1 𝐺 = Δ 𝐺 + 1. 
We say that G is critical if it is connected, Class 2, and 𝐺 − 𝑒is Class 1 for every edge 𝑒 ∈ 𝐸 𝐺 . 
G is overfull if  𝐸 𝐺  >   𝑉 𝐺  2  . Δ 𝐺 ,and it is easy to see that, if G is overfull, then G is Class 2.  

Conjecture: Let G can be connected graph such that Δ 𝐺 <
1

2
  𝑉 𝐺  + 3 and Δ 𝐺Δ ≤ 2.Let 𝐺 ≠ 𝑃∗ and let 

G not be an odd cycle. Then G is Class 1. 

Result: Let G be a connected Class 2 graph with Δ 𝐺Δ ≤ 2. Then 𝐺 is critical; 𝛿 𝐺Δ = 2 ;  𝛿 𝐺 =  Δ 𝐺 − 1, 

unless G is an odd cycle; Γ 𝐺Δ = 𝑉 𝐺 . 
Lemma: Let G be a petal graph such that 𝑝 𝐺 = 1. Then G is Class 1. 

Proof: Suppose that G is Class 2. By Result 3.2.2, G is critical. Let 𝑃𝑤 = 𝑣1𝑤𝑣2be a1-petal of G. Let 𝐺1 = 𝐺 −
𝑤 − 𝑣1𝑣2  . Since G is critical, 𝐺1is 3-colourable. Suppose that the length of the cycle of 𝐺∆containing 𝑣1, 𝑣2is at 

least four. Let 𝑢1𝑣1 , 𝑢2𝑣2 be the two edges adjacent to the edge 𝑣1𝑣2in 𝐺∆ . Let 𝐺∗be the graph obtained from 

𝐺1bythe identification of 𝑣1and 𝑣2  , and let 𝑣∗be the vertex obtained from this identification. Notice that there is 

a natural one-to-one correspondence between the set of 3-colouringsof 𝐺∗and the set of those 3-colourings of 

𝐺1which assign different colours to the edges𝑢1𝑣1and 𝑢2𝑣2  . It is immediate to see that the graph 𝐺∗is not a petal 

graph, but 𝐺∗is connected, ∆ 𝐺∗ = 3 and  ∆ 𝐺∆
∗ ≤ 2. Applying Lemma 3.2.1, we then have that 𝐺∗is Class 1. 

By the above remark, there exists a 3-colouring of 𝐺1under which 𝑢1𝑣1and𝑢2𝑣2get different colours. Always the 

colouring can easily be extended to a 3-colouring of G, were gives a contradiction. Therefore we can assume 

that the cycle K of 𝐺∆containing 𝑣1 , 𝑣2has length three, say 𝐾 = 𝑢𝑣1𝑣2𝑢 . 
However, in this case, any 3-colouringof 𝐺1satisfies the property of assigning different colours to the 

edges 𝑢𝑣1and 𝑢𝑣2  . Again, any such colouring can easily be extended to a 3-colouring of G, which gives another 

contradiction. Therefore G cannot be Class 2 and hence is Class 1.  This proof is complete. 

Definition: The graph 𝑃∗, which is obtained from the Petersen graph by removing one vertex (see Fig.1). Notice 

that 𝑃∗is a petal graph and is not overfull.  

Lemma: Let G be a petal graph such that 𝑝 𝐺 = 2. Then G is Class 1. 

Proof: We will argue by contradiction, as before, so suppose that G is Class 2. ByResult3.2.2, G is critical. Let 

𝑃𝑤 = 𝑣1𝑤𝑣2be a 2-petal of G with centre 𝑤. Let 𝑢1𝑣1𝑥𝑣2𝑢2be a 4-path (or possibly a 4-cycle) in 𝐺∆containing 

𝑣1𝑣2  and let 𝑃𝑡 = 𝑥𝑡𝑦 be the petal of G containing the vertex 𝑥. Since G is critical, 𝐺 − 𝑤is Class 1.  

Notice that underno 3-colouring of 𝐺 − 𝑤 the vertices 𝑣1and 𝑣2can miss different colours, otherwise 

the colouring itself can be immediately extended to a 3-colouring of G, thus contradicting the assumption that G 

is Class 2. Let then 𝜑0be a 3-colouring of 𝐺 − 𝑤. By the way above remark, we can assume as without loss of 

generality, that 𝜑0 𝑢1𝑣1 = 𝛼 ,     𝜑0 𝑣1𝑤 =  𝛽,   𝜑0 𝑥𝑣2 = 𝛼,    𝜑0 𝑣1𝑢2 =  𝛽,   𝜑0 𝑥𝑡 = 𝛾 . Assume also, 

without loss of generality, that 𝜑0 𝑡𝑦 =  𝛽. Exchanging the colours between the edge 𝑥𝑣2and the edge 𝑥𝑡, we 

obtain a colouring of 𝐺 − 𝑤under which the vertices 𝑣1and 𝑣2miss different colours, which contradicts theabove 

remark. Therefore G cannot be Class 2, and hence is Class 1. This proof is complete. 

Lemma: Let G be a petal graph such that 𝑝 𝐺 = ∞. Then G is Class 1. 

Proof: Again we will argue by contradiction, so let us assume that G is Class 2.  

Let𝑣0 ∈ 𝑉 𝐺∆  and let 𝐾 = 𝑣0𝑣1 … . 𝑣𝑘𝑣0be the cycle of 𝐺∆containing  𝑣0  . 
For each 𝑖 = 0,1,2, … 𝑘,let 𝑃𝑤𝑖

= 𝑣𝑖𝑤𝑖𝑦𝑖be the petal of G containing 𝑣𝑖  , and let  𝑓𝑖 =  𝑤𝑖𝑦𝑖  . 

Let 𝐺0 = 𝐺 − 𝑣0𝑤0and let  𝐺1 = 𝐺  \ 𝑉 𝐾 . By Result 2.2.2 ,G is critical so that 𝐺1 is Class 1. 

Suppose that there exists a 3-colouring 𝜑1: 𝐸 𝐺1 →  𝛼, 𝛽, 𝛾 such that, 𝜑1 𝑓𝑘 ≠ 𝜑1 𝑓0 ,say𝜑1 𝑓𝑘 = 𝛽and 

𝜑1 𝑓0 = 𝛼 . Consider the graph 𝐻 = 𝐺 𝐸 𝐾   𝐸 𝑃𝑤𝑖
 𝑘

𝑖=1   . 
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Let  𝐻∗ be the graph obtained from H by splitting the vertex 𝑣0 into a pair of vertices 𝑧1 , 𝑧𝑘  with 𝑧1adjacent to 

𝑣1and 𝑧𝑘adjacent to 𝑣𝑘 in  𝐻∗. Note that 𝐻∗ ≅ 𝐿𝑘+1 where 𝐿𝑘+1is the graphdefined in Result 2.2.2.  

Also note that there is an obvious one-to-one correspondence between the 3-colourings of Hand those 3-

colourings of 𝐻∗in which the edges 𝑧1𝑣1and 𝑧𝑘𝑣𝑘 receivedifferent colours.  

By Lemma 4, there exists a proper colouring 𝜑∗: 𝐸 𝐻∗ →  𝛼, 𝛽, 𝛾 of𝐻∗ satisfying the conditions  

𝜑∗ 𝑧1𝑣1 = 𝛼, 𝜑∗ 𝑓𝑖 = 𝜑1 𝑓1  for each 𝑖 = 1,2, … , 𝑘and𝜑∗ 𝑧𝑘𝑣𝑘 ≠ 𝛼. 
By the above observation, this implies the existence of a 3-colouring of H, which we still denote by 

𝜑∗,which satisfies. 𝜑∗ 𝑓𝑖 = 𝜑1 𝑓𝑖   for each𝑖 = 1,2, … , 𝑘,  and 𝜑∗ 𝑣0𝑣1 = 𝛼. 
This colouring can be extended to a 3-colouring 𝜑of G in the following way: we let 𝜑 |𝐸 𝐺1 = 𝜑1 , 𝜑 |𝐸 𝐻 =

𝜑∗and 𝜑 𝑣0𝑤0 ∈  𝜑∗ 𝑣0𝑣𝑘 , 𝛼                   . 
However this is in contradiction with the assumption that G is Class 2, so that the condition𝜑1 𝑓𝑘 ≠

𝜑1 𝑓0  cannot hold. Similarly,𝜑1 𝑓1 ≠ 𝜑1 𝑓0  cannot hold, so that, for all 3-colourings𝜑1 of 𝐺1,  we have: 

𝜑1 𝑓1 = 𝜑1 𝑓0 = 𝜑1 𝑓𝑘  1 Let then 𝜑1be one such colouring, and assume 𝜑1 𝑓0 = 𝛼. 
Consider the graph 𝐺1 𝛼, 𝛽 . 

In this graph the vertices 𝑤𝑘 , 𝑤0 , 𝑤1all have degree one, so that not all of them belongto the same 

connected component of 𝐺1 𝛼, 𝛽 . In particular, by exchanging the colours of the edges in  𝐺1 𝛼, 𝛽; 𝑓0  , we 

obtain a proper colouring of 𝐺1in which not all the edges𝑓𝑘 , 𝑓0, 𝑓1receive the same colour, which contradicts. 

This contradiction shows that G cannot be Class 2, and thus G is    Class 1. This proof is complete. 

The Chromatic Index of Graph Whose Core Has Maximum Degree 2: 

Introduction: In this chapter, we discuss the chromatically index of a graph those core has maximum degree 2. 

Definition: The chromatic index of G, denoted by 𝜒′ 𝐺 , is the very minimal number k for which G has a k-

edge coloring. 

Definition: An edge cut is a set of edges whose removal introduce and develops a sub graph with lots of  

components than the original graph. 

Definition: A k-edge-connected graph has no edge cut of size 𝑘 − 1. 
Result: Let G be a mutually connected graph with  𝐺∆ =  3. Then G is Class 2 if and only if for some integer 

𝑛, 𝐺 is obtained from 𝐾2𝑛+1 by removing 𝑛 − 1 independent edges. 

Result:  Let G be a connected graph of Class 2 and ∆ 𝐺∆ ≤  2.Then the following statements hold. 

G is critical; 𝛿 𝐺∆ = 2; 𝛿 𝐺   = ∆ 𝐺 − 1, unless G is an odd cycle.  

Result:  Let G be a critical connected graph. Then every vertex of G is adjacent to at least two vertices of 𝐺∆. 
Result:  Let G be a connected graph with ∆ 𝐺∆ ≤ 2.  Suppose the G has an edge cut on size at most ∆ 𝐺 − 2 

which is a matching or a star.  Then G is Class 1. 

Result:  Let G be a connected graph of even order. If ∆ 𝐺∆ ≤ 2 and 𝐺∆  is odd,then G is class 1. 

Theorem:  Let G be a connected graph of even order and with ∆ 𝐺∆ ≤  2.  If  𝐺∆ ≤ 9 or 𝐺∆ ≡ 𝐶10 , then G is 

Class 1. 

Proof: For simplicity, let Δ = Δ 𝐺 . The proof is by induction on  Δ +  𝐺 . First note that if 𝛿 𝐺∆ ≤ 1  or 

𝛿 𝐺 < ∆ − 1 or there exists a vertex 𝑥 ∈ 𝑉 𝐺  such that  𝑁𝐺∆
(𝑥) ≤ 1, then by Result 3.2.2 and 3.2.3, G is 

Class 1 and we are done. Thus, one can easily assume that 𝐺∆ is a disjoint union of cycles,𝛿 𝐺 = ∆ − 1 and  

 𝑁𝐺∆
 𝑥   ≥ 2 for every 𝑥 ∈ 𝑉 𝐺     (1) 

By (1), we find that  2  𝐺 −  𝐺∆   ≤  𝑒𝐺 𝐺∆, 𝐺 − 𝐺∆  =  ∆ − 2  𝐺∆ , and so,  

 𝐺  ≤  
∆ 𝐺∆ 

2
≤ 5∆ .                                              2  

Moreover, if  𝐺∆  is odd, then by  Result 4.2.5, G is Class 1. Thus we can assume that 
 𝐺∆  is even, 𝐺∆ is a disjoint union of cycles and  𝐺∆ ≤ 8 or  𝐺∆ = 𝐶10  .        3  

Note that since 𝐺∆ is a disjoint union of cycles, ∆ ≥ 2. 
If ∆= 2, then by the connectivity of G, G is a cycle of even order and so G is Class 1.  

If ∆= 3, then since  𝐺  is even, by Result, the assertion is proved. 

So we may assume that ∆ ≥ 4.If G has an edge cut of size at most 2, then by Result, G is Class 1 and we are 

done. This proof is complete. 

Two Conjectures on Edge-Colouring: 

Introduction: In this chapter, we discuss the two conjectures on Edge-colouring. 

Two Conjectures on Edge-Colouring Conjecture: Let G be a simple graph with Δ 𝐺 >
1

3
 𝑉 𝐺  . Then G is 

class 2 if and only if G contains on overfull subgraph H with Δ H = Δ G . 
Theorem: Conjecture 1 is true if Δ 𝐺 ≥  𝑉 𝐺  − 3. In posed the following conjecture, about regular graphs of 

even order. First note that a Class 1 regular graph is often called 1-factorizable, as it is the union of edge-disjoint 

1-factors.  

Also note that a regular graph of odd order is overfull, and so is Class2. If a graph G is regular, let 𝑑 𝐺  denote 

its degree. Also note that a regular graph odd order is overfull, so is class 3 if a graph G is regular let denote the 
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non homogeneous   

Conjuctive:  The pendent vertex is one degree so the graph G is odd the edge is non homogenous. Hence the 

non-homogenous class 3 is true. 

Conjecture: Let G be a regular simple graph of even order satisfying  𝑑 𝐺 ≥  
1

2
 𝑉 𝐺   . Then G is 1-

factorizable. 

Result: Conjecture 2 is true if either𝑑 𝐺 ≥  
1

2
  7 − 1  𝑉 𝐺   or 𝑑 𝐺 ≥   𝑉 𝐺  − 4 .  

Theorem: If Conjecture 1 is true, then Conjecture 2 is true. 

Proof:  Let G be a regular graph with  𝑉 𝐺  = 2𝑛  and 𝑑 𝐺 ≥ 𝑛 . Suppose that Conjecture 1 is true and that 

G is Class 2. Let H be an overfull subgraph of G with Δ 𝐻 = 𝑑 𝐺 . Since H is overfull, it follows that   𝑉  𝐺    

is odd, so 𝐻 ≠ 𝐺 . Let  def 𝐻 =    𝑑  𝐺  − 𝑑 𝐻 𝑉   𝑣 ∈𝑉 𝐻 .   It is shown in [2] that, if H is overfull, then 

def 𝐻  ≤  Δ 𝐻 − 2 = 𝑑  𝐺  −  2. 
It follows that G has an edge-cut S with  𝑆  ≤ 𝑑  𝐺  − 2 such that  𝐺 \𝑆 = 𝐻  𝐽 , where 𝑉  𝐻  𝑉  𝐽  =  𝜙 . 
Since Δ 𝐻 = 𝑑  𝐺  ≥ 𝑛 ,  it follows that H has at least 𝑛 + 1 vertices. Consequently J has at most 𝑛 − 1 

vertices. Thus  𝑑  𝐺  + 1 >  𝑉  𝐽   . Since G is regular, the number of edges joining vertices of J to vertices of 

H is at least   𝑑  𝐺  −  𝑉  𝐽   + 1  𝑉  𝐽     .For fixed 𝑑  𝐺  ,    𝑑  𝐺  −  𝑉  𝐽   + 1  𝑉  𝐽    is a quadratic in 

 𝑉  𝐽   . 
In the range  1 ≤  𝑉  𝐽   ≤ 𝑛 − 1, it has two minima, one at each end point, with values  𝑑  𝐺   and  𝑑  𝐺  −
𝑛 + 2  𝑛 − 1 . But 𝑑  𝐺  >  𝑆  , and  𝑑  𝐺  − 𝑛 + 2  𝑛 − 1  ≥ 2𝑛 − 2 ≥ 𝑑  𝐺  − 1 >  𝑆  , Contradicting 

the definition of S.Thus G has no overfull sub graph H, and so, by Conjecture 1, is Class 1, or in other words is 

1-factorizable.Thus Conjecture 2 is true. This proof is complete. 

Conclusion: 

In this paper, to begin with, the basic definitions are listed with appropriate explanations. Then we have 

discussed colouring the petals of a graph. We have also elaborated the chromatic index of a graph whose core 

has maximum degree 2. Further, we have dealt with two conjectures on edge-colouring.  This project gives deep 

explanation on colouring the petals of a graph. Moreover, in this project, we have narrated many facts and 

examples, whenever necessary, so that it will be easier to understand the concepts in the material. Further, we 

have given the list of references from where we have collected details for this project. 
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