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Abstract:

A petal graph is a connected graph G with maximum degree three, minimum degree two, and such that
the set of vertices of degree three induces a 2—regular graph and the whole set of vertices of degree in two
induces an empty graph. We prove here that, with the single exception of the graph obtained from the Petersen
graph by deleting one vertex, all petal graphs are Class 1.
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Introduction:

Graph theory is one of the branch of mathematics. A graph bears no relation to the graph that chat data
such as the progress of the stock market or the growing population of the planet. Graph paper is not specifically
used for drawing the graphs of graph theory. In graph theory a graph is a collection of dots with roots that may
or may not be connected to each other by stem lines. It does not matter how big the dots are how long the lines
are or whether the lines are straight curved or squiggly the “dots” do not even to be round. All the matter is
which dots are connected by which lines. One of the first people to experiment with graph theory was a man by
the name of Leonhard Euler (1707 - 1783). He attempted to solve the problem of crossing seven brides onto an
island without using any of them more than once. There are several reasons of the acceleration for interest in
graph theory. It has become fashionable to mention that there are applications of graph theory to some areas of
physics, chemistry, communication science, computer technology, electrical and civil engineering, architecture,
operational research, genetics, psychology, sociology, economics.
Introduction:

In this chapter, we introduce some basic important definitions of graph theory.
Basic Definitions:
Definition: A graph G consists of a pair (V(G) , E(G)) where V(G) is a non-empty finite set whose elements are
called points or vertices and E(G) is a set of unordered pairs of distinct elements of V(G). All These elements
of E(G) are always called as lines or edges of the graph G. A graph with p points and q lines is called a (p, q)
graph.
Example: Let V = {a, b, ¢, d} and E = {{a,b}, {a,c}, {a,d}} G = (V, E) is a (4,3) graph. This graph can be
represented by the diagram given in Fig 1.
Definition: Let x = {uy, v1}€E(G), this fixed row x is called a join u and v. We already mention x = uv and
we say that the points u and v are adjacent. We also say that the point u and the line x are incident with each
other. If two distinct lines x and y are incident with a common point then they are called adjacent lines.
Example: Let V={1,2,3,4} and E = {{1,2}, {1,3},{1,4},{2,3},{2,4},{3,4}}. This graph is represented by the
diagram a, b, c, d, e, f represent the edges in E.
Definition: A graph in which any two distinct points were adjacent is called a complete graph. A complete
graph with p points is denoted by K,
Definition: A graph G is called a bigraph or bipartite graph if V can be partitioned into two disjoint subsets V;
and V; such that every line of G joins a point of V; to a point of V,. (Vy, V,) is called a bipartition of G. If
further G contains every line joining the points of V; to the points of V, then G is called a complete bipartite
graph. If VV; contains m points and V; contains n points the complete bigraph G is denoted by K, ,
Example: This is a complete bipartite graph denoted by K33 with the bipartition (V1 , V) where V; = {1,2,3}
and V, = {4,5,6}.
Definition: The degree of a point v in a graph G is the number of lines incident with v and is denoted by deg v.
A point v of degree 0 is called an isolated vertex and a point v of degree 1 is called an end point or a pendant
vertex. For any other graph G we would define as 8(G) = min {deg v / veV(G)} and A(G) = max {deg v /
veV(G)}.
Example: Consider the graph, in the graph G

5 is the isolated vertex since deg 5 =0

17



International Journal of Engineering Research and Modern Education (IJERME)
Impact Factor: 7.018, ISSN (Online): 2455 - 4200
(www.rdmodernresearch.com) Volume 6, Issue 1, 2021
4 is the pendant vertex since deg 4 = 1
degl=2, deg2=2
3(G)=0, A(G)=deg3=3.
Colouring the Petals of a Graph:
Introduction: In this chapter, we discuss colouring the petals of a graph.
Colouring the Petals of a Graph:
Definition: A petal graph is a connected graph G such that:A(G) = 3, §(G) = 2; G,is 2-regular; every edge
of G is incident with at least one vertex in Gy.
Note: The petal size of G, denoted p(G), is the very minimal size of the petals of G.
Conjecture: Let G be a connected graph such that A(G,) < 2.Let G # P*.Then G is Class 2 if and only if G is
overfull.
Result: Let G be a critical graph. Then every vertex of G is adjacent to at least two vertices of G,.
Lemma: Let G be a connected Class 2 graph with A(G) = 3and A(G,) < 2. ThenG is a petal graph.
Proof: Property 1 and 2 of the definition of petal graph follow immediately from Result
Property 3 follows from Result 3.2.2 and Result3.2.1. Notice that this lemma reduces Theorem3.2.1 to Theorem
3.2.2. From now all G could denote a petal graph. The colour set will be the set {a,B,y}and, if D c
{a,B,y} ,D will denote The set {a,5,¥}/D . This proof is complete.
Definition: Let G is Class 1 if y;(G) = A(G) and Class 2 if y,(G) = A(G) + 1.
We say that G is critical if it is connected, Class 2, and G — eis Class 1 for every edge e € E(G).
Gisoverfull if |[E(G)| > ||[V(G)|/2].A(G),and it is easy to see that, if G is overfull, then G is Class 2.

Conjecture: Let G can be connected graph such that A(G) < %(IV(G)I + 3)and A(G,) < 2.Let G # P* and let

G not be an odd cycle. Then G is Class 1.

Result: Let G be a connected Class 2 graph with A(G,) < 2. Then G is critical; §(G,) = 2; 6(G) = A(G) — 1,
unless G is an odd cycle; T'(G,) = V(G).

Lemma: Let G be a petal graph such that p(G) = 1. Then G is Class 1.

Proof: Suppose that G is Class 2. By Result 3.2.2, G is critical. Let P, = v;wwv,be al-petal of G. Let G; = G —
w — vy, . Since G is critical, G,is 3-colourable. Suppose that the length of the cycle of G,containing vy, v,is at
least four. Let u; vy, u,v, be the two edges adjacent to the edge v, v,in G, . Let G*be the graph obtained from
G, bythe identification of v;and v, , and let v*be the vertex obtained from this identification. Notice that there is
a natural one-to-one correspondence between the set of 3-colouringsof G*and the set of those 3-colourings of
Gy which assign different colours to the edgesu; v;and u,v, . It is immediate to see that the graph G *is not a petal
graph, but G*is connected, A(G*) = 3 and A(G,) < 2. Applying Lemma 3.2.1, we then have that G*is Class 1.
By the above remark, there exists a 3-colouring of G,under which u; v;andu,v,get different colours. Always the
colouring can easily be extended to a 3-colouring of G, were gives a contradiction. Therefore we can assume
that the cycle K of G,containing vy, v,has length three, say K = uv,v,u.

However, in this case, any 3-colouringof G, satisfies the property of assigning different colours to the
edges uv;and uv, . Again, any such colouring can easily be extended to a 3-colouring of G, which gives another
contradiction. Therefore G cannot be Class 2 and hence is Class 1. This proof is complete.

Definition: The graph P*, which is obtained from the Petersen graph by removing one vertex (see Fig.1). Notice
that P*is a petal graph and is not overfull.

Lemma: Let G be a petal graph such that p(G) = 2. Then G is Class 1.

Proof: We will argue by contradiction, as before, so suppose that G is Class 2. ByResult3.2.2, G is critical. Let
P, = v;wwv,be a 2-petal of G with centre w. Let u, v, xv,u,be a 4-path (or possibly a 4-cycle) in Gcontaining
vV, and let P, = xty be the petal of G containing the vertex x. Since G is critical, G — wis Class 1.

Notice that underno 3-colouring of G — w the vertices v;and v,can miss different colours, otherwise
the colouring itself can be immediately extended to a 3-colouring of G, thus contradicting the assumption that G
is Class 2. Let then ¢,be a 3-colouring of G — w. By the way above remark, we can assume as without loss of
generality, that po(u;v1) = a, @o(ryw) = B, @o(xvy) =a, @y(viuy) = B, @o(xt) =y . Assume also,
without loss of generality, that ¢, (ty) = B.Exchanging the colours between the edge xv,and the edge xt, we
obtain a colouring of G — wunder which the vertices v;and v,miss different colours, which contradicts theabove
remark. Therefore G cannot be Class 2, and hence is Class 1. This proof is complete.

Lemma: Let G be a petal graph such that p(G) = . Then G is Class 1.

Proof: Again we will argue by contradiction, so let us assume that G is Class 2.

Letvy € V(G,) and let K = vyv, .... v, vobe the cycle of Gycontaining vy .

Foreachi =0,12,..k/let B,, = v;w;y;be the petal of G containing v; , and let f; = w;y; .

Let G, = G — vywpand let G; = G \ V(K).By Result 2.2.2 ,G is critical so that G; is Class 1.

Suppose that there exists a 3-colouring ¢q: E(G;) — {a, B, y}such that, ¢,(f;,) # @.(fy).saye, (fi,) = Band
@1 (fy) = a. Consider the graph H = G[E(K) U U, E(P,,)] .
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Let H* be the graph obtained from H by splitting the vertex v, into a pair of vertices z;, z, with z;adjacent to
viand z,adjacent to v, in H*. Note that H* = L, where L, _4is the graphdefined in Result 2.2.2.
Also note that there is an obvious one-to-one correspondence between the 3-colourings of Hand those 3-
colourings of H*in which the edges z; v;and z, v, receivedifferent colours.
By Lemma 4, there exists a proper colouring ¢*: E(H*) — {a, 8, y}ofH* satisfying the conditions
0 (z1v1) = a, ¢*(f;) = ¢,1(f;) foreach i = 1,2, ..., kandp*(z, v},) # a.

By the above observation, this implies the existence of a 3-colouring of H, which we still denote by
¢*,which satisfies. *(f;) = ¢, (f;) foreachi =1,2,...,k, and ¢*(vyv;) = a.

This colouring can be extended to a 3-colouring @of G in the following way: we let ¢ |z) = @1, @ lgw) =
@ and p(vowy) € {@*(vovy), a}.

However this is in contradiction with the assumption that G is Class 2, so that the conditiong; (f;,) #
¢1(fo) cannot hold. Similarly,p4(fi) # ¢1(fy) cannot hold, so that, for all 3-colourings¢g, of G;, we have:
01(f1) = 01(fu) = o1 (fi,)(1)Let then ¢, be one such colouring, and assume ¢4 (fy) = a.

Consider the graph G; (a, B).

In this graph the vertices wy, wy, wyall have degree one, so that not all of them belongto the same
connected component of G;(«, ). In particular, by exchanging the colours of the edges in G;(a,B; f,) , we
obtain a proper colouring of G;in which not all the edgesf, f,, fireceive the same colour, which contradicts.
This contradiction shows that G cannot be Class 2, and thus G is  Class 1. This proof is complete.

The Chromatic Index of Graph Whose Core Has Maximum Degree 2:

Introduction: In this chapter, we discuss the chromatically index of a graph those core has maximum degree 2.
Definition: The chromatic index of G, denoted by x'(G), is the very minimal number k for which G has a k-
edge coloring.

Definition: An edge cut is a set of edges whose removal introduce and develops a sub graph with lots of
components than the original graph.

Definition: A k-edge-connected graph has no edge cut of size k — 1.

Result: Let G be a mutually connected graph with |G,| = 3. Then G is Class 2 if and only if for some integer
n, G is obtained from K,,, ., by removing n — 1 independent edges.

Result: Let G be a connected graph of Class 2 and A(G,) < 2.Then the following statements hold.

G is critical; 6(Gp) = 2; 6(G) = A(G) — 1, unless G is an odd cycle.

Result: Let G be a critical connected graph. Then every vertex of G is adjacent to at least two vertices of G,.
Result: Let G be a connected graph with A(G,) < 2. Suppose the G has an edge cut on size at most A(G) — 2
which is a matching or a star. Then G is Class 1.

Result: Let G be a connected graph of even order. If A(G,) < 2 and|G,| is odd,then G is class 1.

Theorem: Let G be a connected graph of even order and with A(G,) < 2. If |G, < 9 or Gy = Cyp, then G is
Class 1.

Proof: For simplicity, let A = A(G). The proof is by induction on A + |G|. First note that if §(G,) <1 or
6(G) < A —1 or there exists a vertex x € V(G) such that |NGA(x)| < 1, then by Result 3.2.2 and 3.2.3, G is
Class 1 and we are done. Thus, one can easily assume that G, is a disjoint union of cycles,§(G) = A — 1 and
|NGA(x)| > 2foreveryx € V(G) (1)

By (1), we find that 2(|G| — |Gal) < e;(Ga, G — G,) = (A — 2)|G,l, and so,

NG|
G| < <S5A. 2)

Moreover, if |G,| is odd, then by Result 4.2.5, G is Class 1. Thus we can assume that

|G,| is even, G, is a disjoint union of cycles and |G,] < 8or Go_Cp. (3)

Note that since G, is a disjoint union of cycles, A > 2.

If A= 2, then by the connectivity of G, G is a cycle of even order and so G is Class 1.

If A= 3, then since |G| is even, by Result, the assertion is proved.

So we may assume that A > 4.I1f G has an edge cut of size at most 2, then by Result, G is Class 1 and we are
done. This proof is complete.

Two Conjectures on Edge-Colouring:

Introduction: In this chapter, we discuss the two conjectures on Edge-colouring.

Two Conjectures on Edge-Colouring Conjecture: Let G be a simple graph with A(G) > %lV(G)l. Then G is

class 2 if and only if G contains on overfull subgraph H with A(H) = A(G).

Theorem: Conjecture 1 is true if A(G) = [V(G)| — 3. In posed the following conjecture, about regular graphs of
even order. First note that a Class 1 regular graph is often called 1-factorizable, as it is the union of edge-disjoint
1-factors.

Also note that a regular graph of odd order is overfull, and so is Class2. If a graph G is regular, let d(G) denote
its degree. Also note that a regular graph odd order is overfull, so is class 3 if a graph G is regular let denote the
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non homogeneous
Conjuctive: The pendent vertex is one degree so the graph G is odd the edge is hon homogenous. Hence the
non-homogenous class 3 is true.
Conjecture: Let G be a regular simple graph of even order satisfying d(G) = %lV(G)l. Then G is 1-
factorizable.
Result: Conjecture 2 is true if eitherd (G) > %(\/7 - DIV ordG) = [V(G)| —4.
Theorem: If Conjecture 1 is true, then Conjecture 2 is true.
Proof: Let G be a regular graph with |V(G)| = 2n and d(G) = n. Suppose that Conjecture 1 is true and that
G is Class 2. Let H be an overfull subgraph of G with A(H) = d(G). Since H is overfull, it follows that |/(&)|
is odd, so Z# &. Let def(#) = X, epiumn(@(&) — d,(1)). Itis shown in [2] that, if H is overfull, then
def(#) < A(A) -2 =d(6) — 2.
It follows that G has an edge-cut S with |.5| < (&) — 2 suchthat &\S = ZU/,where V(AHANV(/) = &.
Since A(HX) = &(&) = », it follows that H has at least 7 + 1 vertices. Consequently J has at most 7z — 1
vertices. Thus Z(&) + 1 > |7(/)]. Since G is regular, the number of edges joining vertices of J to vertices of
His at least (Z(&) — |V (/)| + D|V(/ )| .For fixed 4(&), (d(&)—|V(/)|+D|¥V(/)| is a quadratic in
|7/l
Intherange 1< |7 (/)| < » — 1, it has two minima, one at each end point, with values #Z(&) and (Z(&) —
n+2)(n—-1).Butd(&)>|S|,and (d(&) —n +2)(n —1) =222n -2 = d(&)— 1> |S|, Contradicting
the definition of S.Thus G has no overfull sub graph H, and so, by Conjecture 1, is Class 1, or in other words is
1-factorizable.Thus Conjecture 2 is true. This proof is complete.
Conclusion:

In this paper, to begin with, the basic definitions are listed with appropriate explanations. Then we have
discussed colouring the petals of a graph. We have also elaborated the chromatic index of a graph whose core
has maximum degree 2. Further, we have dealt with two conjectures on edge-colouring. This project gives deep
explanation on colouring the petals of a graph. Moreover, in this project, we have narrated many facts and
examples, whenever necessary, so that it will be easier to understand the concepts in the material. Further, we
have given the list of references from where we have collected details for this project.

References:
1. B. Bollobas, Modern Graph Theory, Springer-Verlag, 1998.
2. J. K. Dugdale and A.J.W. Hilton, A sufficient condition for a graph to be core of a Class 1 graph,

Combinat. Prob. Comput., 9 (2000), 97-104.

3. AJ.W. Hilton & C. Zhao, A sufficient condition for a regular graph to be class 1, Journal of Graph

Theory, 17 (6)(1993), 701-712.

20



