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Abstract:

The present paper is consent with the investigation of wave propagation in a homogeneous isotropic
and thermo elastic medium with magnetic field and a time dependent heat source effect due to thermo
mechanical source. The governing equations is solved by Lames constants and obtained the frequency equation
which determines the phase velocity, static stress, magnetic field has been investigated. Numerical results
analyzing the frequency equation are discussed and presented. The results indicate that the phase velocity
increases with increase in wave number and uniaxial static stress.
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1. Introduction:

The wave proapagation in magneto-thermo elastic solids is important in many fields such as earthquake
engineering, soil dynamics, nuclear reactors, high energy particles accelerators etc. On propagation of thermo
elastic waves in homogeneous isotropic plates is studied in [1]. In this paper they discussed that the phase
velocities of symmetric and skew symmetric modes of wave propagation is computed for various values of
wave number. In [2] authors studied the propagation of magneto-thermo elastic plane waves. In the said paper,
the analysis is essentially a reconciliation of the governing equations in three fields such as the electromagnetic
field, the thermal field and the elastic field, which interact one with another. Electro-magneto thermo elastic
plane waves with thermal relaxation in a medium of perfect conductivity is discussed in [3]. In this they
discussed three different methods. The first deals with a thick plate of perfect conductivity subjected to a time-
dependent heat source on each face; the second concerns the case of a heated punch moving across the surface
of a semi-infinite thermo elastic half-space of perfect conductivity subject to appropriate boundary conditions;
and the third problem deals with a plate with thermo-isolated surfaces subjected to time-dependent compression.
Reflection of plane waves in a rotating transversely isotropic magneto-thermo elastic solid half-space is
investigated in [4]. The effect of magnetic Field and thermal relaxation time on three dimensional thermal shock
problem in generalized thermo elasticity is studied in [5]. On Rayleigh wave in generalized magneto-thermo
elastic media with hydrostatic initial stress has been illustrated in [6]. In [6], they derived governing equations of
generalized magneto-thermo elasticity with hydrostatic initial stress are solved for surface wave solutions. The
particular solutions in the half-space are applied to the boundary conditions at the free surface of the half-space
to obtain the frequency equation of Rayleigh wave. Two temperature magneto-thermo elasticity with initial
Stress: State Space Formulation is discussed in [7]. In the said paper, magneto-thermo elastic interactions in an
initially stressed isotropic homogeneous elastic half-space with two temperatures are studied using mathematical
methods under the purview of the L-S model of linear theory of generalized thermo elasticity. In [8] authors
discussed electro-magneto-thermo-elastic plane waves in rotating media with thermal relaxation. Generation of
generalized magneto thermo elastic waves by thermal shock in a perfectly conducting half-space is investigated
in [9]. Mathematical modeling on rotational magneto-thermo elastic phenomenon under gravity and laser pulse
considering four theories is studied in [10]. Magneto-thermo elastic plane waves in rotating media are studied
in [11]. In [12] authors investigated magneto-elastic plane waves in infinite rotating media. Rotating magneto-
thermo elastic rod with finite length due to moving heat sources via Eringen’s nonlocal model is studied in [13].
The said paper presents an analytic solution for thermo elastic homogeneous rotating finite rod subjected to a
periodic source is presented. The nonlocal governing equations of the problem were transferred by applying the
Laplace transform and then were solved numerically by using Taylor’s expansion series. Three Dimensional
Thermal Shock Problem in Magneto-Thermo elastic Orthotropic Medium is investigated in [14]. In 14] a detail
analysis of propagation of thermo elastic disturbances in an orthotropic medium in the presence of a time
dependent thermal shock is studied. Two dimensional problem of magneto-thermo elasticity fiber reinforced
medium under temperature-dependent properties with three-phase-lag theory is investigated in [15]. A study on
fractional order magneto-thermo elasticity with three-phase-lag is studied in [16]. The problem of wave
propagation in magneto-thermo elastic solids in the presence of static stresses has not been analyzed earlier and
considered for the first time in this paper. The frequency equation is obtained in the presence of magneto-thermo
elastic solids in the presence of static stresses. Phase velocity against wave number for different uniaxial static
stress is computed for two types of materials and then discussed and presented graphically.
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2. Governing Equations and Solution of the Problem:
Consider an isotropic magneto-thermo elastic solid cartesian coordinate system (X,Y,z) . Let

U(u,v,w) are displacements. The effective stress components in the case of elastic isotropic solid is given in
[17] are
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In the above usual stresses and heat equation are [18]
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tis the time, 4 and 4 are Lame’s constants. € is the solid dilatation. The strain €; related to the

that couples the heat conduction and elastic field equation, £ = ( K is the thermal conductivity,

displacements are given by
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Substitution of effective stresses eq. (1) for the usual stresses eq. (2), the equations of motions takes the
following form:
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In eq. (4), F,F,,F; are the components of Lorentz forces along the X, Y,Z directions. Taking into the

account the absence of displacement current the linearlized Maxwell equations governing the electromagnetic
fields for slowly moving solid medium having electrical conductivity are [19]

curlh = J, curlE = —, Z—:‘, divh =0, divE =0,

h=curl(xH,) ®)
In eq. (5), E, j, HO, Hos ﬁ and U(U,V,W) are the electrical intensity, electric current density, primary
magnetic field, magnetic permeability, perturbed magnetic field over the constant primary magnetic field vector
and displacement vector respectively. Solving J of eg. (5) and then put the value of Jin the equation of
Lorentz force F = Ho (j xH o). We get the components of Lorentz force as
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Eq. (3) together with eq. (1) and eq. (6) must satisfy at every inside and on the surface of the body. Boundary
conditions are to be imposed to solve the problem completely. To construct the relationship between the time
variant and static elastic quantities, the particular displacements and stresses are given in [17]
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Ineq. (7), w, isthe n" angular frequency. Using the equations (1), (2), (6), (7) in (4) we get the static equations
(n=0) given below.
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Similarly, the harmonic equations (n =1) are as follows
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The egs. (8) and (9) are the static equatlons and first harmonic equations, respectively. In eq. (9) the suffix one
on the displacement components and the stresses has been dropped.
3. Equation of Uniaxial Static Stress:
It is assume that applied static uniaxial stress is acting in the direction of Z -axis, then we have
oy, =&, = 0 (i#)),

1o

Ty =T yy, =0, (10)

where Oy, is static uniaxial stress. Substituting the egs. (10) in the egs. (9), we can see that the egs. (8)
automatically satisfied and the static strains are obtained as follows:
€, =&y, =98, T=T,.
(11)
Substituting the above egs.(10)and (11) in eq. (9) we the get the equations in the following form
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Substituting equatlons (11) in the first equation of the eq. (2), we obtain the following equation
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In the above, ¢ =———— is the Poisson’s ratio and Y = M is the Young’s modulus.
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Substituting the eqs (2), (3) (13) in eqg. (12), the equations of motion are given below
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The solution of physical variables of eq. (14) can b_e decomposed in the following form:
(U,V, W,T)(X, Y, Z,t) — (Cl,Cz,C3,C4)em_l(k1x+k2y+ksz). 15)

In the above, C,,C,,C,,C, are arbitrary constants, k, (i =1,2,3) is the wave number in the j" direction,

such that the wave number K = [k + K3 + K2 . substituting the eq. (15) in the eq. (14), the equations of
motion in terms of displacement components are as follows:
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4. Numerical Results and Discussion:
For the sake of numerical results the wave propagation is consider along z -direction. In this case

, =k, =0. Then the equations of motion reduces to
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In the above eq. (18),C = I Cis the phase velocity and 3 = ( )at. For a non-trivial solution, the

determinant of above coefficient matrix is zero. This leads to the frequency equation:
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In the above eq. (19) we have calculated real phase velocity. Here imaginary part is neglected. In order to
illustrate theoretical results obtained the proceeding sections; we now present some numerical results. Materials
choosen for this purpose are Magnesium, Copper is given in [7, 10].The physical data are given below:;
Magnesium:

A=94x10"Nm™?, 41 =4.0x10"Nm2, p=1.74x10°Kgm2,c, =1.04x10° JKg " deg >,
10’

T, = 298K, K =17x10°Wm 'K, &, = 2.68x10°Nm * deg ", s, =47 <107 Hm " H =7~ Am*.
T

=0.

Copper:
A=T7.76x10°"Nm~?, 1 =3.86x10"Nm~, p =8954x10°Kgm—,c, = 383.1JKg " deg >,

T, =293K, K =386Wm 'K ™, o, =1.78x10°K ™, 4y =4z x10*Hm ™, .H, =9x10° Am™.

Applying these parameter values in Eq. (19), the implicit relation between the phase velocity and wave
number for fixed static uniaxial stress is obtained. Phase velocity is computed against wave number for static
uniaxial stress. The values are computed using the bisection method implemented in MATLAB, and the results
are depicted in figures 1-3. Figure.1-3 shows the plots of phase velocity against the wave number for (static
stress) ST=100,200,300 in the case of magnesium, copper materials. From the figure 1-3, phase velocity
increases with increase in wave number. And also as static uniaxial stress and wave number increases phase
velocity increases. In general, copper material values are greater than magnesium. But the phase velocity values
are higher in the case of magnesium material than copper material. This difference is due to the presence of
magnetic permeability.

—— magnesium

_ —o— copper

phase velocity

O B N W M~ O O N 00 ©

Wave Number

Figure 1: Variation of phase velocity with the wave number at ST-100
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Figure 2: Variation of phase velocity with the wave number at ST-200
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Figure 3: Variation of phase velocity with the wave number at ST-300
Conclusion:

Wave propagation in magneto-thermo elastic solids in the presence of static stresses is investigated.
The frequency equation is obtained in the presence of magneto-thermo elastic solids in the presence of static
stresses. Phase velocity against wave number for different uniaxial static stress is computed for two types of
materials is discussed and presented graphically. In all the cases phase velocity increases with increase in wave
number and static uniaxial stress.
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£ density o Kroneckar delta

v

ij

C specific heat e cubical dilatation

K Thermal conductivity Mo  Magnetic permeability

a,  coefficient of linear thermal expansion E Electric displacement

3A+2u

B=(—5") J current density vector

3

t  time H Total magnetic intensity vector

o

€jj

components of stress H, Initial uniform magnetic field

components of strains F. Components of Lorentz body force
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